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Abstract 
It is very common for people across the globe to 
collaborate on the Internet and intellectual 
property amongst each other . A serious threat to 
this form of collaboration can come from 
“backdoor” attacks from hackers, who can 
distort the information content.  For example, a 
backdoor attack may replace common operating 
system functions with malicious ones. A possible 
precaution against such an attack is to generate 
a signature database  and compare the signature 
of a  system functionality with  its golden 
signature before using the functionality. We 
present an alternate and novel method to detect 
Trojan activity. Called time fingerprinting, the 
method relies on observing a finite number of 
fingerprints during signature generation and 
tracing the Trojan fingerprints in system files. 
We have verified the desired properties using 
common semi trus ted operating system files.   
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1. Introduction 
Trust is of vital importance in a col laboration. 
Internet provides a number of means to 
collaborate on projects, such as e -mail groups and 
users share files frequently through these means. 
A serious threat to this form of collaborative 
computing comes from Trojan attacks, where a 
seemingly harmless file contains malicious 
content [5]. For example, attackers are known to 
replace system-related files that rarely undergo 
change, such as the kernel image or system 
daemons.  Trojans can result in annoying pop -up 
messages at the minimum and corrupti on or 
deletion of data at the other end of the spectrum.  
Trojan code in the “login” system functionality 
can intercept the user’s password and forward it to 
a hacker.  Object reconciliation, which compares 
an object with an earlier version of the same 
object, has been used as a solution. Checking for 
properties such as size, date or time of 
modification is not a foolproof technique since 
these can be manipulated by a hacker.  In fact, a 
hacker can, through a trial -and-error procedure, 
insert malicious code  and yet generate a binary 
executable file which matches the original file in 
these properties that are easy to test.   

 
A checksum or another “signature” can be added 
to the file to authenticate the file. A database of 
the golden signatures is maintained on a separate 
server to minimize the possibility of modifying 
both the  golden and the file signatures. After 
downloading a file, a user can check if the 
signature of the file matches the published 
signature and discard the file if the signatures do 
not match.  Signature checking is also well suited 
to provide security to the mobile objects 
technology [1], software is divided into individual  
code blocks.  Legal code blocks  of application are 
installed on the client beforehand. When the client 
application starts, it is first connected to the 
designated server through the network and 
additional code blocks ar e downloaded. Java 
Applets [4] and ActiveX [2] are examples of 
mobile objects [4].  For security, each mobile 
object is associated with a signature. The cl ient 
must authenticate itself to the server at the starting 
of the application by transmitting the signature, 
which, in turn, is compared against the golden 
signature by the server.  
 
In this paper, we propose a security measure that 
is faster in detecting the infected illegal files and 
more efficient in terms of storage used.  The 
signatures of the files are generated using a 
technique known as Concurrent Intermediate 
Signature Comparison (CIC).  Signature 
comparisons are done at predefined time instants 
called legal time fingerprints, which have the 
property that the original signature becomes equal 
to a function of the message to be tested.  Our 
technique is applicable for all file types.  
 
2 Basic Idea  

A file is an ordered sequence of bytes, and for the 
purpose of signature computation, we split the file 
into n blocks of  b-bits each.  We may have to pad 
the file with at most b -1 zeros.   We refer to the 
file as the “message under test” (MUT) and write  

MUT = C1, C 2, C 3 ... C  n  , 

 where Ci  is the ith  code block of the MUT. The 
notation C(i,j) is used to denote the j -th bit of 
block Ci.  Let C *

1, C *
2, C *

3 ... C *
n be the blocks 



 

of the original Trojan -free message.  The MUT  is 
compacted into a b-bit signature using a scheme 
such as the multiple-input signature register or 
MISR [3]. Such a method uses a register S called 
signature register and initializes it to a seed value.  
For block j in the MUT the following computation 
is repeated.  Let S(k) denote the k -th bit of the 
signature register. Let P = [ P(0), P(1), …, P(b-1)] 
be a b-bit 0/1 sequence chosen apriori.  The 
polynomial (1+P(1).x + P(2). x 2 + … + P(b-1). x b-

1) is known as the characteristic polynomial  of the 
signature register.   

S(k) = S(k-1) ⊕ C(i,j)  for k = 1, 2, …, b-1 

S(0) = Σ [S(k).P(k) ⊕ C(i,k)] 

Let Sj be the content of the signature register after 
the input code blocks C 1, C 2, C 3 ... C j have been 
applied.  We refer to Sn as the signature of MUT. 
Conventionally, Sn is compared with the “golden” 
signature Gn of the original message and the MUT 
is declared infected if Sn is different from the 
golden signature. We shall refer to Sj, nj <≤1 , 

as partial signatures of MUT; we can also talk of a 
golden partial signature G j,  nj <≤1  in the 
same spirit, which can be obtained by compacting  
C*1, C*2, C*3 ... C*j  into the signature register.  
When the original message is altered, one or more 
code blocks Cj will be different from that of the 
original block C*j, and one or more partial 
signatures of the MUT is likely to be different 
from the corresponding golden signatures.  Unlike 
conventional schemes, where only the final 
signature Sn is compared with Gn, comparing 
multiple intermediate signatures with the 
respective partial golden signatures will  i mprove 
the confidence of the testing scheme.   
Conventional signature schemes suffer from 
aliasing, which occurs when the signature of the 
infected message matches the golden signature. 
The concept of partial signature matching reduces 
the probability of aliasing. 

Storing the golden partial signatures G j in the 
database is expensive. We present a solution to 
this problem, based on the notion of time 
fingerprints of the file. A legal time finger print 
(LFTP) is a time instant i at which the golden 
partial signature Gi can be indirectly derived from 
the blocks of the MUT. For example, consider the 
time instants where 1* += ii CG  i.e. the (i+1)st 
data block can be used in place of  Gi  in 
comparing the signature Si  with Gi , eliminating 
the need for storing Gi . The reader may wonder 
whether such time fingerprints will always exist 
for a message; our experiments indicate that they 
do, and in fact, we can prove the existence of time 
fingerprints (Lemma 2). A generalization of the 

above scheme is to d efine a legal time finger print 
as an instant i where )*( 1+= ii CgG  where g is 
a one-to-one function.  The choice of this function 
is made such that the signature register can be 
trivially modified to perform the additional 
function of comparing the current signature with 

)*( 1+iCg . 

Figure 1 illustrates the idea behind a legal 
fingerprint.  The error bit Y at the time instant i is 
defined as  



 =

= −

otherwise
SCgif ii

iY 1
)(0 1  

The database consists of the indicator bits X at the 
time instant  i, defined as   





=
otherwise

aisif
X i 0

instanttfingerprinlegali1  

The MUT is infected if the logical AND of bits X 
and Y is 1 at any time.  A fingerprint at instant i   

becomes illegal if )(1 ii CgS ≠− . We now 
present arguments about the effectiveness of our 
scheme in reducing aliasing. If a time fingerprint 
falls between two modified code blocks, it is 
bound to reveal the infection of the message, 
which may otherwise go undetected.  This result 
is stated as the following lemma.  
 
Lemma 1:  If, at time instant i, the par tial 

signature ii GS ≠ , and Ch is the next modified 
data code block, then fingerprint 

hijiLFPj +<≤, , must be illegal.  
 
Proof:  Assume that a legal time fingerprint 

jiLTFP +  exists at time instant ji + where 0 < j 

< h.  This implies )(1 jiji CgS +−+ = .  Further 

jiC +
is a correct code block by assumption.  

Therefore, the partial signature 

11 −+−+ = jiji GS  for all hiji +<≤ .  
However, we have a contradiction for ji = . 

 The legal time fingerprints may also be viewed as 
time instances to observe the generated error bit Y 
and declare the message under test as infected if 
the error bit Z is 1.  An efficient way to generate 
the Trojan-free error bit X is to store only the 
instances of the legal fingerprints.  

3 Code Blocks Functions  

We define an auxiliary Boolean function that 
maps a b-bit input to a b-bit output by flipping j 
bits of the input, bj <≤0 . There can be 2b such 
functions and we refer to them as 



 

1210 ,,,
−bHHH L .  The function iH  flips the 

jth bit position of the input if and only if the binary 
representation of i contains a 1 in the j th position. 
The function 0H  is the identity function and 
leaves the input unchanged.  Given a binary string 
B, let the function LeftRotate(B) refer to the 
rotation of B by 1 bit to the left. For reasons that 
will become clear later, the signature function g is 
selected as ))*(()*( 11 ++ = ixi CHLeftRotateCg  
where x is determined as explained later; the legal 
fingerprint 1+iLTFP  will thus refer to a time 

instant 1+i  where )*( 1+= ii CgG .  We denote by 
?M the set of all legal fingerprints of a message 
under test MUT. 

}1);*(|{ 11 niCLeftRotateGLTFP iiiM <≤== ++γ
 

Figure 2 illustrates the process of generating the 
error status Y for the MUT. An MISR is used to 
compact the blocks, as explained earlie r. At the 

same time, we compare 
121 ,,, i

b
i

b
i CCC L−−

 with the 
signature register bits S b-2, Sb-3,…,S0.  Another 
EXOR gate is used to compare Sb-1 with 0

iC .  The 

values bjSC jb
jb

i <≤⊕ −−
− 1,1  and SbiC

1
0

−
⊕  

are OR-ed together to generate the bit Y. 
(Replacing the OR process by NAND 
will implement the function 

12 −mH ). The pseudocode for 
generating the Legal Time 
fingerprints LTFPs of a give file is 
shown in Figure 3.  

3.1 Legal Time Fingerprint Space 
Set 
 
For a given seed, a file can have upto 
2b different sets of legal time fingerprints. Since 
there are 2b possible seeds for compacting a b-bit 
code blocks, each file  can have also up to 2b legal 
time fingerprints for a given function Hx. 
Therefore, each file can have up to  22b different 
sets of the legal time fingerprints. The following 
lemma gives the minimum number of LTFPs  
which can be obtained by implementing an y 
function Hx in our tester application.  
 
Lemma 2:  For a file segmented into n b-bit code 

blocks, there exists a function Hx that leads to 

at least 





b

n
2

 legal time fingerprints, 

irrespective of the characteristic polynomial 
and the ini tial seed of the LFSR.  

  

Proof:  Let ei be the b-bit vector obtained by 
comparing )( iCg  with the golden partial 
signature Gi-1. A vector required to generate the 
time fingerprint for the file can assume one of 
the 2b possible values of ei. In the worst case, 2b 
successive vectors, corresponding to 2b 
successive code blocks of the file, are all 
distinct. Extending this argument, when the file 
has N.2b code blocks, a specified vector must 
repeat at least N times. Since any vector can be 
implemented in the program as a legal time 
fingerprint LTFP for the file with a suitable 
choice of function Hx, it is clear that when the 
size of the file has n code blocks, the least 

number of legal time fingerprints is 





b

n
2

. 

Based on similar arguments as above, we can 
prove the following lemma.  

Lemma 3:  For a file segmented into n b-bit code 
blocks, there exists an initial seed for the LFSR 

buffer, which leads to at least 





b

n
2

 legal time 

fingerprints irrespective of the  characteristic 
polynomial and the function.  

3.2 Trojan Time Fingerprints TTFPs  

The traditional signature-based antivirus programs 
protect systems from known  Trojans. This 
approach is vulnerable, as malicious code is 
becoming more complex to detect. We have 
observed that the compaction of the infected files 
yields many instants similar to that of the legal 
fingerprints of the original file but occur at 
different time instants .  These instants belong only 
to the malicious code. We call these instances as 
Trojan time fingerprints (TTFPs) .  A TTF occurs 
at time instant i if 

 
 

Number of LTFPs 

(b=8, function  F0) 

Number of LTFPs 

(b=8, function F25) Files Types Size 
KB 

Bound LTFPs Bound LTFPs 
WINSOCK.DLL 22 6 25 6 12 

OLE2.DLL 39 10 39 10 8 
TCPTSAT.DLL 16 4 12 4 43 

COMMON.COM 91 23 35 23 9 
FORMAT.COM 49 13 18 13 26 

CDPLAYER.EXE 32 8 31 8 3 
TELNET.EXE 76 19 9 19 51 

REXPROXY.EXE 58 15 37 15 23 
Table 1:  Number of LTFPs for some system files  

11 )()*( −− =≠ iiii SCgandGCg



 

While the set of the LTFPs for a particular file can 
be determined by simulating the original file, no 
simulations are required to determine the Trojan 
Time fingerprints TTFPs. Testing of infected files 
has shown that even a single malicious instruction 
added to the document will generate an adequate 
number of TTFPs.   We show that Trojan time 
fingerprints have many superior properties over 
legal time fingerprints.   A single Trojan time 
fingerprint is sufficient to declare an infected file. 
To see how the TTFPs enhance the detection 
technique, let us consider  an infected file with two 
Legal Time fingerprints as shown in Figure 4.  
The shaded portions in the figure show the range 
of the erroneous partial signatures for the infected 
file. In case A, the Trojan can be detected using 
illegal time fingerprint of th e file. In  case B, the 
Trojan cannot be detected using ITFPs since there 
are no LTFPs in the shaded portion. However, this 
Trojan can be detected if it can generate a Trojan 
Time fingerprint for itself as in case C.  
 
Trojan time fingerprint c an be easily detected by a 
simple modification to the procedure for detecting 
LTFP, namely, replacing the AND condition by a 
logical XNOR function as shown in Figure 5.  

 
The merits of the Trojan time fingerprint concept 
are high. Any single TTFP represent s a signature 
of some Trojan. Looking for a single TTFP is 
similar to running signature -based antivirus 
program, without the need to actually know all the 
actual Trojans signatures.  The total number of the 
TTFPs and their time instances can be used for th e 
diagnosis of the actual type of the Trojan that 
targeted the file.  
 

File under test  LTF
Ps 

  
ITFP
s 

 
TTFP

s 
Original 

File 
Common.co

m 
9 0 0 

Com1* 9 9 17 
Com2* 9 5 8 Infected 

File 
Com3* 9 2 3 

  *  Infected Common.com files.  
Table 2:  The number of LTFP s, ITFPs, and 

TTFPS 
 
Table 2 shows the number of the legal and illegal 
time fingerprint as well as the Trojan time 
fingerprints for the DOS Common.com file. The 
original file Common.com  was modified at its 
beginning (com1), at the middle (com2), and at th e 
last portion of the file (com3). The infection of the 
file at the initial portion of its content will be 
easily detected with large number of illegal time 
fingerprints and Trojan time fingerprints. 
However, if the infection occurs only at the end of 
the file, the chance of detection will be less since 
only the last LFP will be affected and the number 
of TTFPs is small.  

4 Selective Codes Testing  
 
We now present a technique to improve the 
efficiency of the test scheme for large files. This 
method relies on “partial” checking of the file 
based on the following observation. At the LTFP 
time instances, the partial signature stored in  the 
signature register is all zeros. Therefore, by 
selecting an initial seed of all zeros, the entire 
contents of the MUT is divid ed into a number of 
segments equal to the number of the LTFPs for 
that message (see Figure 6). Each segment in the 
document is associated with two LTFPs, the first 
at the beginning of the segment and the other at its 
end. The number of the blocks of each s egment is 
equal to the total number of blocks included 
between these two fingerprints. Based on this 
observation, we can run the test process on any 
individual segment alone, or on a selected number 
of segments, or on the whole contents of the file.  
Figure 6 illustrates the process of a selective file 
testing in which only the second and the third 
segments of the file are tested for Trojan infection.    

5 Test Planning 

It is too time consuming to test a large number of 
system files periodically (say up on every login).  
We can schedule the test planning for each 
individual file in the system to be done in two 
separate sessions:  

(1) Selective testing, where only a few 
segments are tested more frequently, say daily.  
The number of the segments to be tested ca n be 
predefined by the user, and the segments 
themselves can be selected randomly.  

(2) Complete testing, where all the files are 
tested thoroughly, say on a weekly basis.  The 
pseudocode for the selective test planning using 
both LTFPs and TTFPs  is shown in F igure 7.  
The user can select the segments to be tested by 
identifying the first LTFP and the last LTFP 
instances of the selected segments, referred here 
by   LTFPstart, and LTFPend, respectively.  

6 Optimizing the Database Storage  
 
Our simulation results indicate that each fi le can 
have a wide range of LTFP sets, including the 
empty set (one that has zero LTFP). Figure 8 
shows an example of LTFP sets for different 
functions in the simulation of RexProxy.exe file. 
Different functions yield different LTFP sets, (see 
dashed circles). The appropriate fingerprints set 
for a file is determined according to the following 
considerations:  
§ A large number of LTFPs allows early 

detection of the Trojan, but increases the 
space for the database required to store such a 



 

set. The file is segmented into a large number 
of small segments.  

§ With a small number of LTFPs, the size of the 
database storage is reduced and the Trojan 
detection will depend on the existence of 
ITFPs and TTFPs.  

 
§ With an empty set of LTFPs, we eliminate the 

need of the database storage. The number of 
segments in the file is this case is one.  The 
testing of the file depends completely on the 
existence of at least one TTFP.   

 
7 Conclusions 

We described an alternate and robust method for 
the detection of Trojan code in system  files based 
on the notion of time fingerprints.  Our approach 
relies on (1) observing a finite number of 
fingerprints, which get generated during the 
course of computing the file signature and (2) 
tracing the Trojan time fingerprints in the infected 
files. A benefit to our approach is that because of 
these two techniques, the detection of the Trojan 
code in the file becomes more reliable, faster, and 
requires less space. We have verified the desired 
properties using common semi -trusted system files 
for UNIX and DOS operating systems. We have 
provided a technique to reduce, or even eliminate, 
the storage of the signature database. Our 
algorithm however is relatively new, and further 
analysis is of course justified, as is the case with 
any new proposal of thi s sort.  We also have 
presented a test plan mechanism that can support 
both partial and the complete testing of the file.  
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 /* Given the file msg  to be tested for possible infection,  the block size b, the file contents are 
segmented into n blocks. The characteristic polynomial of the LFSR is fixed.*/  

 
Algorithm ERROR_STATUS (msg,b,g)  
 begin 
  Initialize the signature register with seed;  
 Set Y to False; 
 Pad msg with zeros if necessary and compute n;  
  for j = 1 to n   do begin  
      ))(]0[( 0

jCgSORYY ⊕= ; 
      for i = 1 to b -1   do begin 
              FeedBackSignal =  S(0).P(0) ⊕ S(1). P(1) ⊕ … ⊕ S(b-1).P(b-1) ; 
              1][]1[ −⊕=− i

jCiSiS ; 

              ))(][( 1−⊕= i
jCgiSORYY ; 

           // Y is the error status signal at time instance j.  
           // This signal is sampled at the time instances of the legal time fingerprints.   
     endfor  
     0]0[ jCgnalFeedBackSiS ⊕= ; 
  endfor  
end 
           

Figure 3: Pseudo code for computing ERROR_STATUS  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Trojan Code 

ITFP  

Figure 4: Detection through Legal and Trojan fingerprints  



 

 
 
 
 
 
 
 
 
 

 
 
Algorithm Selective_Test (FileArray)  
  // FileArray: set o f files to be tested for Trojan infection  
begin 
    for each file € FileArray  do begin  
        Initialize the signature buffer;  
        Select_segment(LTFP start, LTFPend);  // Select specific  segments  
        Start with the first block after LTFP start instant; 
       while ENDLTFPtime ≠   do 
                 Generate the error bit Y;   // Check for both illegal or Trojan  fingerprints   
                 if  (LTFP instant and Y=False) OR (TTFP instant)  then begin  
                             Declare file to be infected;  
                             Go to next file;  
   end 
       end  
      Declare file to be Trojan -free; 
    end;  // testing next file  
end .     
 
Figure 7:   Pseudo code for  Selective_Test algorithm  

X    0   0   0   1   0   0 
Y    1   1   1   0   1   1 
 
Z    0   0   0   0   0   0 

X    0   0   0    1    0   0 
Y    1   1   1    1   1   1 
 
Z    0   0   0    1   0   0 

X    0    0    0   1   0   0 
Y    1    0    1   0   1   1  
 
Z    0    1   0   0   0   0 

Legal time 
fingerprint Illegal time 

fingerprint 

Trojan time 
fingerprint 

Trojan Free File Infected File Infected File 

Figure 5: Concept of Trojan Time Fingerprint  
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   Figure 6:  Selective testing to test segments 2 and 3  
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Figure 8: Sets of LTFPs for the RexProxy.exe file for different functions.  
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