

A SELF-CHECKING SIGNATURE SCHEME FOR CHECKING
BACKDOOR SECURITY ATTACKS IN INTERNET

M.F. Abdulla
Department of Computer Science

University of Yemen
Yemen

al_badwi@hotmail.com

C.P. Ravikumar
Texas Instruments India

Wind Tunnel Road
Murugeshpalya, Bangalore 560017

ravikumar@ti.com

Abstract
It is very common for people across the globe to
collaborate on the Internet and intellectual
property amongst each other . A serious threat to
this form of collaboration can come from
“backdoor” attacks from hackers, who can
distort the information content. For example, a
backdoor attack may replace common operating
system functions with malicious ones. A possible
precaution against such an attack is to generate
a signature database and compare the signature
of a system functionality with its golden
signature before using the functionality. We
present an alternate and novel method to detect
Trojan activity. Called time fingerprinting, the
method relies on observing a finite number of
fingerprints during signature generation and
tracing the Trojan fingerprints in system files.
We have verified the desired properties using
common semi trus ted operating system files.

Keywords: Internet Security, Signatur e,
Fingerprint, Trojan, Testing

1. Introduction
Trust is of vital importance in a col laboration.
Internet provides a number of means to
collaborate on projects, such as e -mail groups and
users share files frequently through these means.
A serious threat to this form of collaborative
computing comes from Trojan attacks, where a
seemingly harmless file contains malicious
content [5]. For example, attackers are known to
replace system-related files that rarely undergo
change, such as the kernel image or system
daemons. Trojans can result in annoying pop -up
messages at the minimum and corrupti on or
deletion of data at the other end of the spectrum.
Trojan code in the “login” system functionality
can intercept the user’s password and forward it to
a hacker. Object reconciliation, which compares
an object with an earlier version of the same
object, has been used as a solution. Checking for
properties such as size, date or time of
modification is not a foolproof technique since
these can be manipulated by a hacker. In fact, a
hacker can, through a trial -and-error procedure,
insert malicious code and yet generate a binary
executable file which matches the original file in
these properties that are easy to test.

A checksum or another “signature” can be added
to the file to authenticate the file. A database of
the golden signatures is maintained on a separate
server to minimize the possibility of modifying
both the golden and the file signatures. After
downloading a file, a user can check if the
signature of the file matches the published
signature and discard the file if the signatures do
not match. Signature checking is also well suited
to provide security to the mobile objects
technology [1], software is divided into individual
code blocks. Legal code blocks of application are
installed on the client beforehand. When the client
application starts, it is first connected to the
designated server through the network and
additional code blocks ar e downloaded. Java
Applets [4] and ActiveX [2] are examples of
mobile objects [4]. For security, each mobile
object is associated with a signature. The cl ient
must authenticate itself to the server at the starting
of the application by transmitting the signature,
which, in turn, is compared against the golden
signature by the server.

In this paper, we propose a security measure that
is faster in detecting the infected illegal files and
more efficient in terms of storage used. The
signatures of the files are generated using a
technique known as Concurrent Intermediate
Signature Comparison (CIC). Signature
comparisons are done at predefined time instants
called legal time fingerprints, which have the
property that the original signature becomes equal
to a function of the message to be tested. Our
technique is applicable for all file types.

2 Basic Idea

A file is an ordered sequence of bytes, and for the
purpose of signature computation, we split the file
into n blocks of b-bits each. We may have to pad
the file with at most b -1 zeros. We refer to the
file as the “message under test” (MUT) and write

MUT = C1, C 2, C 3 ... C n ,

 where Ci is the ith code block of the MUT. The
notation C(i,j) is used to denote the j -th bit of
block Ci. Let C *

1, C *
2, C *

3 ... C *
n be the blocks

of the original Trojan -free message. The MUT is
compacted into a b-bit signature using a scheme
such as the multiple-input signature register or
MISR [3]. Such a method uses a register S called
signature register and initializes it to a seed value.
For block j in the MUT the following computation
is repeated. Let S(k) denote the k -th bit of the
signature register. Let P = [P(0), P(1), …, P(b-1)]
be a b-bit 0/1 sequence chosen apriori. The
polynomial (1+P(1).x + P(2). x 2 + … + P(b-1). x b-

1) is known as the characteristic polynomial of the
signature register.

S(k) = S(k-1) ⊕ C(i,j) for k = 1, 2, …, b-1

S(0) = Σ [S(k).P(k) ⊕ C(i,k)]

Let Sj be the content of the signature register after
the input code blocks C 1, C 2, C 3 ... C j have been
applied. We refer to Sn as the signature of MUT.
Conventionally, Sn is compared with the “golden”
signature Gn of the original message and the MUT
is declared infected if Sn is different from the
golden signature. We shall refer to Sj, nj <≤1 ,

as partial signatures of MUT; we can also talk of a
golden partial signature G j, nj <≤1 in the
same spirit, which can be obtained by compacting
C*1, C*2, C*3 ... C*j into the signature register.
When the original message is altered, one or more
code blocks Cj will be different from that of the
original block C*j, and one or more partial
signatures of the MUT is likely to be different
from the corresponding golden signatures. Unlike
conventional schemes, where only the final
signature Sn is compared with Gn, comparing
multiple intermediate signatures with the
respective partial golden signatures will i mprove
the confidence of the testing scheme.
Conventional signature schemes suffer from
aliasing, which occurs when the signature of the
infected message matches the golden signature.
The concept of partial signature matching reduces
the probability of aliasing.

Storing the golden partial signatures G j in the
database is expensive. We present a solution to
this problem, based on the notion of time
fingerprints of the file. A legal time finger print
(LFTP) is a time instant i at which the golden
partial signature Gi can be indirectly derived from
the blocks of the MUT. For example, consider the
time instants where 1* += ii CG i.e. the (i+1)st
data block can be used in place of Gi in
comparing the signature Si with Gi , eliminating
the need for storing Gi . The reader may wonder
whether such time fingerprints will always exist
for a message; our experiments indicate that they
do, and in fact, we can prove the existence of time
fingerprints (Lemma 2). A generalization of the

above scheme is to d efine a legal time finger print
as an instant i where)*(1+= ii CgG where g is
a one-to-one function. The choice of this function
is made such that the signature register can be
trivially modified to perform the additional
function of comparing the current signature with

)*(1+iCg .

Figure 1 illustrates the idea behind a legal
fingerprint. The error bit Y at the time instant i is
defined as



 =

= −

otherwise
SCgif ii

iY 1
)(0 1

The database consists of the indicator bits X at the
time instant i, defined as





=
otherwise

aisif
X i 0

instanttfingerprinlegali1

The MUT is infected if the logical AND of bits X
and Y is 1 at any time. A fingerprint at instant i

becomes illegal if)(1 ii CgS ≠− . We now
present arguments about the effectiveness of our
scheme in reducing aliasing. If a time fingerprint
falls between two modified code blocks, it is
bound to reveal the infection of the message,
which may otherwise go undetected. This result
is stated as the following lemma.

Lemma 1: If, at time instant i, the par tial

signature ii GS ≠ , and Ch is the next modified
data code block, then fingerprint

hijiLFPj +<≤, , must be illegal.

Proof: Assume that a legal time fingerprint

jiLTFP + exists at time instant ji + where 0 < j

< h. This implies)(1 jiji CgS +−+ = . Further

jiC +
is a correct code block by assumption.

Therefore, the partial signature

11 −+−+ = jiji GS for all hiji +<≤ .
However, we have a contradiction for ji = .

 The legal time fingerprints may also be viewed as
time instances to observe the generated error bit Y
and declare the message under test as infected if
the error bit Z is 1. An efficient way to generate
the Trojan-free error bit X is to store only the
instances of the legal fingerprints.

3 Code Blocks Functions

We define an auxiliary Boolean function that
maps a b-bit input to a b-bit output by flipping j
bits of the input, bj <≤0 . There can be 2b such
functions and we refer to them as

1210 ,,,
−bHHH L . The function iH flips the

jth bit position of the input if and only if the binary
representation of i contains a 1 in the j th position.
The function 0H is the identity function and
leaves the input unchanged. Given a binary string
B, let the function LeftRotate(B) refer to the
rotation of B by 1 bit to the left. For reasons that
will become clear later, the signature function g is
selected as))*(()*(11 ++ = ixi CHLeftRotateCg
where x is determined as explained later; the legal
fingerprint 1+iLTFP will thus refer to a time

instant 1+i where)*(1+= ii CgG . We denote by
?M the set of all legal fingerprints of a message
under test MUT.

}1);*(|{ 11 niCLeftRotateGLTFP iiiM <≤== ++γ

Figure 2 illustrates the process of generating the
error status Y for the MUT. An MISR is used to
compact the blocks, as explained earlie r. At the

same time, we compare
121 ,,, i

b
i

b
i CCC L−−

 with the
signature register bits S b-2, Sb-3,…,S0. Another
EXOR gate is used to compare Sb-1 with 0

iC . The

values bjSC jb
jb

i <≤⊕ −−
− 1,1 and SbiC

1
0

−
⊕

are OR-ed together to generate the bit Y.
(Replacing the OR process by NAND
will implement the function

12 −mH). The pseudocode for
generating the Legal Time
fingerprints LTFPs of a give file is
shown in Figure 3.

3.1 Legal Time Fingerprint Space
Set

For a given seed, a file can have upto
2b different sets of legal time fingerprints. Since
there are 2b possible seeds for compacting a b-bit
code blocks, each file can have also up to 2b legal
time fingerprints for a given function Hx.
Therefore, each file can have up to 22b different
sets of the legal time fingerprints. The following
lemma gives the minimum number of LTFPs
which can be obtained by implementing an y
function Hx in our tester application.

Lemma 2: For a file segmented into n b-bit code

blocks, there exists a function Hx that leads to

at least 





b

n
2

 legal time fingerprints,

irrespective of the characteristic polynomial
and the ini tial seed of the LFSR.

Proof: Let ei be the b-bit vector obtained by
comparing)(iCg with the golden partial
signature Gi-1. A vector required to generate the
time fingerprint for the file can assume one of
the 2b possible values of ei. In the worst case, 2b
successive vectors, corresponding to 2b
successive code blocks of the file, are all
distinct. Extending this argument, when the file
has N.2b code blocks, a specified vector must
repeat at least N times. Since any vector can be
implemented in the program as a legal time
fingerprint LTFP for the file with a suitable
choice of function Hx, it is clear that when the
size of the file has n code blocks, the least

number of legal time fingerprints is 





b

n
2

.

Based on similar arguments as above, we can
prove the following lemma.

Lemma 3: For a file segmented into n b-bit code
blocks, there exists an initial seed for the LFSR

buffer, which leads to at least 





b

n
2

 legal time

fingerprints irrespective of the characteristic
polynomial and the function.

3.2 Trojan Time Fingerprints TTFPs

The traditional signature-based antivirus programs
protect systems from known Trojans. This
approach is vulnerable, as malicious code is
becoming more complex to detect. We have
observed that the compaction of the infected files
yields many instants similar to that of the legal
fingerprints of the original file but occur at
different time instants . These instants belong only
to the malicious code. We call these instances as
Trojan time fingerprints (TTFPs) . A TTF occurs
at time instant i if

Number of LTFPs

(b=8, function F0)

Number of LTFPs

(b=8, function F25) Files Types Size
KB

Bound LTFPs Bound LTFPs
WINSOCK.DLL 22 6 25 6 12

OLE2.DLL 39 10 39 10 8
TCPTSAT.DLL 16 4 12 4 43

COMMON.COM 91 23 35 23 9
FORMAT.COM 49 13 18 13 26

CDPLAYER.EXE 32 8 31 8 3
TELNET.EXE 76 19 9 19 51

REXPROXY.EXE 58 15 37 15 23
Table 1: Number of LTFPs for some system files

11)()*(−− =≠ iiii SCgandGCg

While the set of the LTFPs for a particular file can
be determined by simulating the original file, no
simulations are required to determine the Trojan
Time fingerprints TTFPs. Testing of infected files
has shown that even a single malicious instruction
added to the document will generate an adequate
number of TTFPs. We show that Trojan time
fingerprints have many superior properties over
legal time fingerprints. A single Trojan time
fingerprint is sufficient to declare an infected file.
To see how the TTFPs enhance the detection
technique, let us consider an infected file with two
Legal Time fingerprints as shown in Figure 4.
The shaded portions in the figure show the range
of the erroneous partial signatures for the infected
file. In case A, the Trojan can be detected using
illegal time fingerprint of th e file. In case B, the
Trojan cannot be detected using ITFPs since there
are no LTFPs in the shaded portion. However, this
Trojan can be detected if it can generate a Trojan
Time fingerprint for itself as in case C.

Trojan time fingerprint c an be easily detected by a
simple modification to the procedure for detecting
LTFP, namely, replacing the AND condition by a
logical XNOR function as shown in Figure 5.

The merits of the Trojan time fingerprint concept
are high. Any single TTFP represent s a signature
of some Trojan. Looking for a single TTFP is
similar to running signature -based antivirus
program, without the need to actually know all the
actual Trojans signatures. The total number of the
TTFPs and their time instances can be used for th e
diagnosis of the actual type of the Trojan that
targeted the file.

File under test LTF
Ps

ITFP
s

TTFP

s
Original

File
Common.co

m
9 0 0

Com1* 9 9 17
Com2* 9 5 8 Infected

File
Com3* 9 2 3

 * Infected Common.com files.
Table 2: The number of LTFP s, ITFPs, and

TTFPS

Table 2 shows the number of the legal and illegal
time fingerprint as well as the Trojan time
fingerprints for the DOS Common.com file. The
original file Common.com was modified at its
beginning (com1), at the middle (com2), and at th e
last portion of the file (com3). The infection of the
file at the initial portion of its content will be
easily detected with large number of illegal time
fingerprints and Trojan time fingerprints.
However, if the infection occurs only at the end of
the file, the chance of detection will be less since
only the last LFP will be affected and the number
of TTFPs is small.

4 Selective Codes Testing

We now present a technique to improve the
efficiency of the test scheme for large files. This
method relies on “partial” checking of the file
based on the following observation. At the LTFP
time instances, the partial signature stored in the
signature register is all zeros. Therefore, by
selecting an initial seed of all zeros, the entire
contents of the MUT is divid ed into a number of
segments equal to the number of the LTFPs for
that message (see Figure 6). Each segment in the
document is associated with two LTFPs, the first
at the beginning of the segment and the other at its
end. The number of the blocks of each s egment is
equal to the total number of blocks included
between these two fingerprints. Based on this
observation, we can run the test process on any
individual segment alone, or on a selected number
of segments, or on the whole contents of the file.
Figure 6 illustrates the process of a selective file
testing in which only the second and the third
segments of the file are tested for Trojan infection.

5 Test Planning

It is too time consuming to test a large number of
system files periodically (say up on every login).
We can schedule the test planning for each
individual file in the system to be done in two
separate sessions:

(1) Selective testing, where only a few
segments are tested more frequently, say daily.
The number of the segments to be tested ca n be
predefined by the user, and the segments
themselves can be selected randomly.

(2) Complete testing, where all the files are
tested thoroughly, say on a weekly basis. The
pseudocode for the selective test planning using
both LTFPs and TTFPs is shown in F igure 7.
The user can select the segments to be tested by
identifying the first LTFP and the last LTFP
instances of the selected segments, referred here
by LTFPstart, and LTFPend, respectively.

6 Optimizing the Database Storage

Our simulation results indicate that each fi le can
have a wide range of LTFP sets, including the
empty set (one that has zero LTFP). Figure 8
shows an example of LTFP sets for different
functions in the simulation of RexProxy.exe file.
Different functions yield different LTFP sets, (see
dashed circles). The appropriate fingerprints set
for a file is determined according to the following
considerations:
§ A large number of LTFPs allows early

detection of the Trojan, but increases the
space for the database required to store such a

set. The file is segmented into a large number
of small segments.

§ With a small number of LTFPs, the size of the
database storage is reduced and the Trojan
detection will depend on the existence of
ITFPs and TTFPs.

§ With an empty set of LTFPs, we eliminate the

need of the database storage. The number of
segments in the file is this case is one. The
testing of the file depends completely on the
existence of at least one TTFP.

7 Conclusions

We described an alternate and robust method for
the detection of Trojan code in system files based
on the notion of time fingerprints. Our approach
relies on (1) observing a finite number of
fingerprints, which get generated during the
course of computing the file signature and (2)
tracing the Trojan time fingerprints in the infected
files. A benefit to our approach is that because of
these two techniques, the detection of the Trojan
code in the file becomes more reliable, faster, and
requires less space. We have verified the desired
properties using common semi -trusted system files
for UNIX and DOS operating systems. We have
provided a technique to reduce, or even eliminate,
the storage of the signature database. Our
algorithm however is relatively new, and further
analysis is of course justified, as is the case with
any new proposal of thi s sort. We also have
presented a test plan mechanism that can support
both partial and the complete testing of the file.

References:
[1] Satoru T., Ryoichi S., and Masanori K.,

“Seamless Object Authentication in
Different Security Policy Domains ,”
Proceedings of the 33rd Hawaii
International Conference on System
Sciences – 2000.

[2] Ernst, “Knowing ActiveX ”, Prentice Hall,
1996.

[3] Yarmolik V.N., and Demidenko S. N.
“Generation and Application of
Pseudorandom Sequences for Random
Testing”, John Wiley and Sons, 1988.

[4] Orfali, and Harkey, “ Client/Java
Programming with Java and CORBA ”
John Wiley & Son’s, 1997.

[5] Harold T., Stuart A. and Paul C., “ A
framework for modeling Trojans and
Computer Virus Infection “, Computer
Journal, 41(7), pp. 444{458, 1999.

[6] Black J, Halevi S, Krawczyk H, Krovetz
T, and Rogaway P, “UMAC: Fast and
Secure Message Authentication, ” In
Advances in Cryptology - CRYPTO’99,
pp. 216–233, 1999.

 Golden
Signatures

)*(nCg

nG

M

M

)*(1+iCg

1+iG

)*(iCg

iG

M

M

)*(2Cg

2G

)*(1Cg

1G

01101101

00010101

01011010

01011010

01011100

01011010

01011010

00011101
 ?

10011000

10101111

01010001

01001010

?
01000101

g Not equal

Signature

1
1
1

1
1
1

0

1
1
1

1

0

1
1

and
Figure 1: Determination of the legal fingerprint Z

Y X

EXOR

S biC
1

0
−

⊕

1−−
− ⊕ jb

jb
i SC

OR

Feed Back loop(LFSR)

Sb-2 EXOR

Ci
b-2

Sb-1 EXOR

Ci
b-1

S0 EXOR

Ci
0

Error Bit Y

Figure 2: Generating the Error status Y

↑ ↑

↑

↑ ↑

↑ ↑

Segment 1 Segment 3 Segment 2

LTFP

Illegal

Trojan fingerprint

 A

 B

 C

 /* Given the file msg to be tested for possible infection, the block size b, the file contents are
segmented into n blocks. The characteristic polynomial of the LFSR is fixed.*/

Algorithm ERROR_STATUS (msg,b,g)
 begin
 Initialize the signature register with seed;
 Set Y to False;
 Pad msg with zeros if necessary and compute n;
 for j = 1 to n do begin
))(]0[(0

jCgSORYY ⊕= ;
 for i = 1 to b -1 do begin
 FeedBackSignal = S(0).P(0) ⊕ S(1). P(1) ⊕ … ⊕ S(b-1).P(b-1) ;
 1][]1[−⊕=− i

jCiSiS ;

))(][(1−⊕= i
jCgiSORYY ;

 // Y is the error status signal at time instance j.
 // This signal is sampled at the time instances of the legal time fingerprints.
 endfor
 0]0[jCgnalFeedBackSiS ⊕= ;
 endfor
end

Figure 3: Pseudo code for computing ERROR_STATUS

Trojan Code

ITFP

Figure 4: Detection through Legal and Trojan fingerprints

Algorithm Selective_Test (FileArray)
 // FileArray: set o f files to be tested for Trojan infection
begin
 for each file € FileArray do begin
 Initialize the signature buffer;
 Select_segment(LTFP start, LTFPend); // Select specific segments
 Start with the first block after LTFP start instant;
 while ENDLTFPtime ≠ do
 Generate the error bit Y; // Check for both illegal or Trojan fingerprints
 if (LTFP instant and Y=False) OR (TTFP instant) then begin
 Declare file to be infected;
 Go to next file;
 end
 end
 Declare file to be Trojan -free;
 end; // testing next file
end .

Figure 7: Pseudo code for Selective_Test algorithm

X 0 0 0 1 0 0
Y 1 1 1 0 1 1

Z 0 0 0 0 0 0

X 0 0 0 1 0 0
Y 1 1 1 1 1 1

Z 0 0 0 1 0 0

X 0 0 0 1 0 0
Y 1 0 1 0 1 1

Z 0 1 0 0 0 0

Legal time
fingerprint Illegal time

fingerprint

Trojan time
fingerprint

Trojan Free File Infected File Infected File

Figure 5: Concept of Trojan Time Fingerprint

Z

X

Y
XNOR

End of testing Start test Segs 2
and 3

Segment 1 Segment 2 Seg 3 Segment 4 Seg 5

 Figure 6: Selective testing to test segments 2 and 3

.

Figure 8: Sets of LTFPs for the RexProxy.exe file for different functions.

RexProxy.exe

0
10
20
30
40
50
60

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

Functions Values

N
um

be
r o

f
LT

FP
s

