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Abstract 
 
 In this paper, we have undertaken the 
mathematical formulation for determining the 
required buffering time based on the traffic 
intensity on an all-optical network. The effect of 
design parameters on optical network containing 
proper buffer and control circuitry has been 
evaluated. Some of the buffering architectures 
have been suggested to provide different 
buffering times as governed by the diurnal traffic 
requirements.  
 

1. Introduction 
 
In the present days a lot of research is being 
devoted towards the development of all optical 
networks with improved call-connection 
probability and better customer satisfaction by 
reducing lost-calls [1-4]. In order to provide 
better connection facilities, it has thus become 
imperative to provide buffering at busy nodes in 
order to prevent the calls from being dropped. 
Research efforts are being devoted to improve 
buffering facilities [5-6]. In the present paper we 
have developed a generic mathematical model 
for estimation of buffering time and we have 
integrated the concepts of queuing theory with 
the network parameters like the local and diurnal 
traffic requirements, number of wavelengths 
available at the node, the total number of buffers 
maintained at each node etc. The buffering based 
on the Acoustic wave generator structure will be 
highlighted along with some discussion about 
other alternative architectures. 
 

2. Mathematical modeling 
 
In a communication network with ‘w’ 
wavelengths at any node, let us have (m-w) 
buffers available to support the buffering of the 
calls. The call requests arrive with Poisson input 
with a rate ‘λ’. In this network we assume that 
whenever a call comes at a particular wavelength 
to a node, the signal will be converted to some 
other wavelength which is free. If no wavelength 
is free at that time and a buffering space is 
available, then it is put into the buffer which 

provides the time delay corresponding to the 
calculated mean waiting time in the system and 
after the given buffering time delay, when a 
wavelength becomes free, then the buffered 
signal is converted to this free wavelength and 
the call proceeds. However, if no buffer space 
had been empty then the call would have been 
dropped, but the introduction of buffers will 
reduce the call drop rate. The model has been 
developed for all the buffers being 1:1 in nature 
i.e. it can buffer only one call at a time. This 
assumption is made since in a DWDM network 
the wavelength spacing is about 2 nm, hence if 
two such close wavelengths are buffered on the 
same link, then they might interact resulting in 
mixing up of signals. However if the 
wavelengths of the network had been spaced 
apart, then many wavelengths can be buffered 
with one buffer only and the model can be easily 
adjusted accordingly. The model also assumes 
that calls arrive at the node with a Poisson 
distribution and the service time of each 
wavelength (i.e. the mean call-duration time) has 
an exponential distribution. Another feature of 
this system will be that the incoming signals will 
be serviced or buffered based on first-come-first-
serve (FCFS) basis. With these propositions we 
can model the system as a multiple server model 
with fixed number of servers (wavelengths) and 
fixed number of storage spaces (delay loops) and 
the equivalent Kendall’s notation is given by: 
(M/M/s) : (FCFS/m/ ), with m>s, where s is 
the total number of servers i.e. the wavelengths 
(s=w) and (m-s) or ‘m-w’ is the total number of 
available buffers at the node. This remains as the 
basic formulation and we proceed towards the 
generalized calculation of mean delay time, call 
dropping probability, cost of set-up required and 
profit estimates. The mean time delay required 
for buffering can be statistically determined with 
preciseness by using standard methods like 
Monte-Carlo Simulation. 
 
The ‘w’ servers (wavelengths) have service 
times, each exponentially distributed with 
parameter µ. Let ρ= λ/µ, be the ratio factor. The 
system will always be in steady state because if 
more than m calls arrive, only ‘m’ can be 
entertained (i.e. ‘w’ calls get connected and ‘m-
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w’ calls wait in buffers based on FCFS basis) 
while the remaining calls are dropped.  
 
First, we discuss the method to evaluate the 
profit at each node for the stated conditions. The 
profit calculation involves the inclusion of the 
terms like revenue, loss from blocked calls, loss 
from waiting calls and buffer usage cost, all 
considered on per hour basis. The expression 
obtained is given below: 
 
 Profit (per hour) = Revenue per hour – loss 
from blocked calls per hour – loss from waiting 
time of calls per hour – buffer usage 
(maintenance) cost per hour. 
 
Profit= λ(1-Pm).C(call)- λ {ρm P0 /(w!wm-w)}. 
C(call)- {ρw+1 /(w!w)}.{[1-(m-w+1)( ρ/w) m-w+ 
(m-w)(ρ/w) m-w+1]/(1-(ρ/w) )2 }P0C(buff/ hr.)  
– (m-w).C(setup or maintenance/hr.)                (1) 
 
where P0=probability of no customer in the 
system and is given by, 
                                                                       
P0=1/[1+ ρw  {1- (ρ/w)m-w+1}/{w!(1- ρ /w)}+ 
w-1  
 Σ  ρn/n!]                                                           (2) 
n=1                                                                                                                     
for ρ/w not equal to 1. 
 
For ρ/w equal to 1, we have 
Profit = λ(1-Pm).C(call ) –λ {ρm P0 /(w! wm-w  )}. 
C(call)- (ww/w!){(m-w)(m-w+1)/2}.P0C(buff) –
(m-w).C(setup/maintenance)                           (3)                                                                                          
Where, 
                                               w-1  
P0=1/[1+ {ww (m-w+1)/w!}+ Σ  ρn /n!]           (4) 
                                               n=1         
We assume that m>w for both the cases and (m-
w) are the number of buffers used.

                                                                      

An estimation of the call-blocking probability 
also needs to be undertaken. This is given by the 
formula: 
Blocking probability at each node is 
 Pm= ρm P0/[w!w m-w].                                     (5)                               
 
It must be noted here that the call-blocking 
probabilities given throughout the discussion are 
not the blocking probabilities because of 
unavailability of wavelengths in the links lying 
ahead which leads to the destination node; rather 
it is the probability that a call will be blocked at a 
node due to the wavelengths on the immediate 
next link being busy and the unavailability of 
buffering slot at that node. The blocking 
probability drops as we increase the number of 
wavelengths.  
 
For a fixed ‘w’ and ‘m’, we can also estimate the 
call-blocking probability against traffic density 

and thereby make a decision based on those 
result about the optimal number of buffers and 
the corresponding call-blocking probabilities. 
The profit estimates will be inferred in the forth-
coming discussions. The graphs shown below 
shows the call-blocking probabilities for links 
with six wavelengths, µ=6 and λ (referred as 
lam) varying from 19 to 25, for no buffers and 
two buffers respectively. 
 

 

 
Figure1:Call-blocking probability against Traffic 
 
For a fixed w, we also vary ‘m’ and find the 
profit for various combinations of traffic 
intensity and number of buffers. Intuitively it can 
be said that increase in number of buffers will 
improve profit, but the restriction is imposed by 
the number of buffers allowable at each node. 
 
Here we take a look at the graphs obtained with 
varying number of buffers used ( no buffer for 
the first graph, one buffer for the second and 
three for the third graph respectively), under 
different traffic intensities. The mean service rate 
for all these graphs has been kept as 8 calls per 
unit time. The graphs for profit estimates 
obtained for the stated values are shown next: 
 
 It is clearly evident from the graphs of Fig. 2, 
that the initial increase in profit with in creasing 
value of λ, is due to the fact that more customers 
are arriving, hence profit increases, but soon the 
profit starts falling sharply because the 
contribution from the loss due to increase in 
blocking probability and increased delay time 
becomes progressively dominant. 
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Figure2:Nonuniform Profit variation with Traffic 
 
The above plots have been drawn with some 
chosen values of the parameter, but it must be 
emphasized that the nature of the plot and the 
steepness in drop in profit amount is dependent 
on these parameter values, so similar plots can be 
undertaken with proper cost values for real-life 
analysis. However a general trend can thus be 
forecasted from the above graphs. 
 
In a similar way, we need to undertake an 
estimation of the variation in profit by varying 
the number of buffers used and for different 
values of service rate µ, while the value of traffic 
intensity is kept constant. Thus from the graphs 
obtained so far, we can correlate between 
different parameters to arrive at the optimal 
decision. The call-blocking probability graphs 
can be used to find the required number of 
buffers to be used in order to achieve the desired 
service efficiency. Then for those values of 
service rate and traffic arrival rate, we can find 
the profit estimate. 
 
The profit graphs for different number of buffers 
and varying service rate from 5 to 20 calls/unit 
time, but with fixed traffic arrival rate are given 
in Fig. 3. 

 

 
Figure 3: Profit variation with Service Time. 
 
The following plot shows the variation in 
probabilities with the changing values of mean 
call time (service rate), µ. It is observed that with 
increasing values of µ, for fixed value of λ (=20 
in this case), the result is that the call-blocking 
probability i.e. P m (where ‘m-w’ buffers are 
present) decreases. This can also be seen 
intuitively from the fact that a larger value of µ 
(or ‘miu’) means more number of customer calls 
being serviced per unit time i.e. service rate is 
higher, or correspondingly mean call duration is 
lower, hence the blocking probability is also low. 
As the value of µ decreases, the call-duration 
increases, hence blocking probability goes up as 
shown in the following graph: 
 

 
Figure 4: Call-connection Vs. Service Rate. 
 
The mean waiting time i.e. delay required 
(buffering time) is given by:  Wq=Lq/λ’, where 
λ’=(1-Pm) λ, where λ’=λ[1-(ρm)/(w!)w m-w].     (6)                                     
 The graph below shows the variation in delay 
required as ‘λ’ varies. 
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Figure 5: Required Buffering time Vs. Traffic. 
 
If  Wq  is the delay that has to be introduced in 
the buffer loop and L be the loop length required 
to introduce a delay of T units of time, then the 
length of the fiber required for buffering = 
Wq.L/T. 
Cost of fiber implementation per unit 
length=C(fiber). 
So, cost of buffering for each loop= C(setup 
cost/hr.)=Wq.L.C(fiber)/T                               (7) 
Thus, the Cost of buffering for each loop is equal 
to the cost C(setup/maintenance) 
Utilization factor of each wavelength is N/w 
where N=(Number of busy servers) and is given 
by, 
      w                    m  
N= Σ n Pn    + w  Σ  Pn                                    (8)                                                                                       

                                                               

          n=0                n=w+1

Therefore,  
      w                             m  
N= Σ(n /n!) ρnP0   + w Σ  ρnP0/(w!wn-w)         (9)          
          n=0                         n=w+1 

 3. Architecture to achieve 
Buffering:  
 
In this model we have a buffer made up of 
several links which can provide different time 
delay as and when required. In the model 
discussed here, we have considered only 1:1 
buffering i.e. each loop can accommodate and 
provide delay to one signal at a time. The idea 
can be simply extended to loops accommodating 
more than one signal at different wavelengths.  
In the following model, we have sets of main 
links, all capable of providing equal delay, but 
each main link has many inner links with 
different loop lengths and the entry of the light 
signal into this loop is controlled with a switch 
(switched-loop selector arrangement), which in 
turn is controlled by the control word generated 
by a computer in order to provide the required 
time delay. The incoming signal is diverted to an 
empty buffering space by means of Bragg 
diffraction caused by the generation of an 
Acoustic wave having a proper period to diffract 

the light in the required direction into an empty 
link the architecture is represented below: 
 

 
Fig.: Acoustic Wave Generator based buffering. 
 
From the above discussion it is clear that when a 
signal at a particular wavelength needs to be 
buffered, then the most important parameter that 
comes into picture is the delay required i.e. the 
buffering time needed. We would like to 
deliberate on few other aspects before entering 
into further discussions. 
 
It must be mentioned here that the traffic arrival 
rate varies over the day, the morning may traffic 
rate may be lower than the mid-day and again the 
traffic might increase in the night and then 
decrease in the late night. Thus we can expect to 
have to have four to five values of mean traffic 
arrival rate, λ, over different times of the day, 
with slight variation around these mean values.  
The buffering block shown above can be used to 
account for such an application. The lengths of 
the delay loops shown can be dynamically 
changed over the day by controlling the opening 
of the switches which are placed at the entry of 
the inner loops (each inner loop having a 
different length to provide different time delay). 
When a signal arrives for buffering, a main loop 
(numbered from 1 to ‘n’ in the above figure) 
which is free (i.e. doesn’t contain a buffered 
signal already at that instant) is chosen. The light 
signal thus needs to be directed into the 
corresponding loop. It is evident that the signal 
needs to be directed at some particular angle in 
order to place them in the selected loop by a 
system on chip. 
 

4 



The following figure shows the arrangement, 
where one signal converted to a particular 
wavelength travels a greater distance inside the 
buffer to get greater delay, whereas in the other 
case another signal at a different wavelength gets 
reflected at a previous position where it satisfies 
the Bragg condition. Thus variable delays can be 
given to the signals by converting them to proper 
wavelengths such that the condition for reflection 
is satisfied at different distances inside the 
grating. This architecture can be thought of to 
produce buffers. The calculations for the delay 
time required and the wavelength into which the 
incoming signal can be converted can be 
efficiently done by a processor.  

 
Figure 5: Chirped Fiber Bragg Grating Buffer. 
 
Another possible modeling that can be thought of 
is also based on similar lines. In this case, instead 
of converting the incoming signal to a suitable 
wavelength to satisfy the reflectivity criteria, if 
we can vary the grating period dynamically by 
producing chirped stationary Acoustic wave, 
such that the grating period becomes ‘Λ1’ at a 
distance ‘L’ inside the grating, thereby providing 
the required time delay and also satisfying the 
Bragg condition for the incoming wavelength λ1. 
 

 
Figure 6: Dynamically varying Chirped Grating 
for Buffer architecture. 
 
From the above figure it is seen that the delay 
time required is same in both the cases, so the 
reflection must occur after the signals have 
traveled a distance ‘L’ inside the grating. 
However, the two incoming signals were at 
different wavelengths. Hence to satisfy the Bragg 
condition for reflection, the values of the wave-
period at the required distance ‘L’ should be 
different. This necessitates the generation of 
chirped stationary Acoustic wave for proper 
buffering. These ideas can be explored further 
for implementation as buffers. However, the 
estimations and mathematical modeling for any 

buffering design, profit estimates, delay required 
etc. remains the same and can be thought as a 
Queuing system model as discussed elaborately. 
 

4. Conclusions 
 
The paper discusses the mathematical modeling 
for mean buffering time based on various design 
consideration parameters like mean traffic arrival 
rate, mean call-duration, number of wavelengths 
at a node and the number of buffers available. 
The approach adopts Queuing System 
formulations and provides insight into the inter-
relation among the design parameters and the 
system profitability, leading to a compromised 
solution for optimal buffering design at the node. 
Ideas for hardware implementation have also 
been undertaken. A detailed analysis for 
switched-loop selector based buffer architecture 
has been presented along with some scope of 
conventional buffers. The paper, in general, 
focuses on the modeling and designing aspects 
for buffering by highlighting on the correlation 
between network parameters and design 
parameters. This can help the designers and the 
management to determine an acceptable solution 
for profitability and reduced call-blocking 
probability in the buffering of signals in optical 
networks. 
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