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Abstract

In this paper, we present an algorithm for Voice Activ-
ity Detection (VAD) in speech signals using the mini-
mum phase group delay function. The proposed method
considers a buffer consisting of contiguous frames of the
given signal and computes the short-term energy (STE)
for that buffer. By appending a surrogate signal to STE
and viewing the resultant signal as a positive part of the
magnitude spectrum of an arbitrary signal, the minimum
phase group delay function is computed. The group de-
lay is then noise compensated and median filtered. The
regions having positive group delay values are classified
as speech and those with negative values are classified
as noise. Experimental comparisons with the G.729 An-
nexe B VAD algorithm demonstrates significantly better
performance for the proposed method, revealing that the
algorithm is robust to noise.

1. Introduction

A Voice Activity Detection (VAD) algorithm distin-
guishes between speech and non-speech regions in a
speech signal. It has several applications, including auto-
matic speech recognition (ASR) and speech coding. VAD
is a preprocessor stage to many such systems, and by se-
lectively processing the output from VAD subsystem, the
performance of the system is significantly improved. For
example, in ASR, VAD improves the recognition accu-
racy significantly.

Traditionally, features like short-term energy, pitch
etc. have been used for VAD. These are generally thresh-
old based methods and do not perform well in low SNR
conditions. The International Telecommunication Union
recommends the G.729-Annexe B algorithm for VAD [1]
and it is used in several speech coding systems. It uses a
piecewise linear discriminant based on line spectral fre-
quencies, high and low band energies and zero-crossing
rate to make the VAD-decision.

Statistical techniques for VAD [2], [3], [4] model
speech and noise as independent random variables. Meth-
ods for VAD based on the non-stationarity of noise were

explored in [5], [6], [7]. Recently, some VAD algorithms
exploit the fact that speech has certain higher order statis-
tics (HOS) properties that are distinct from those of Gaus-
sian noise. These algorithms model noisy-speech as a
mixture of Gaussian and non-Gaussian processes [8], [9]
. However, when noise is not Gaussian, or when unvoiced
speech behaves like Gaussian noise, the distinction be-
tween speech and noise is ambiguous. Methods improv-
ing this have been proposed in [10].

Computing the minimum phase group delay function
of the short-term energy of a signal has been explored
for detecting syllable boundaries in [11]. The algorithm
was extended to identify speech and non-speech regions
in noisy conditions in [12]. However, the algorithm had
a latency equal to the length of the signal. In this paper,
we improve the algorithm further by reducing the latency
as follows: (a) buffering contiguous frames of speech (b)
handling the artifacts of buffering.

This paper is organized as follows: Section 2 reviews
the group delay function. In Section 3, the proposed al-
gorithm, GD-VAD is described. The performance com-
parison of the proposed method with G.729B is done in
Section 4. Finally, we conclude in Section 5.

2. Review of the minimum phase group
delay function

Let z;(n) and X;(w) be Fourier transform pairs, and
Xg(w) = Xl(w)Xg(w) (1)
Then,
| Xz(w) =] X1(w) || X2(w) | )
arg(Xs(w)) = arg(X1(w)) + arg(X2(w))  (3)

and
T’Jf3 (w) = T-T/l (w) + T372 (w) (4)

where 7, (w), 7z, (w) and 7, (w) correspond to the group

delay function of X3(w), X1 (w), Xo(w) respectively.
From equations (2) and (4) it can be observed that

multiplication in the spectral domain corresponds to ad-
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dition in the group delay domain. Also, group delay de-
rived from a minimum phase signal is called the mini-
mum phase group delay function. The additive and high-
resolution properties of group delay functions are well
established [13], [14], [11].

The VAD algorithm [12] uses a minimum phase sig-
nal derived from the short term energy (STE) function as
if it were a magnitude spectrum. The group delay func-
tion of this minimum phase signal is then computed. The
peaks in the group delay correspond to speech regions
while the valleys represent non-speech regions.

3. The GD-VAD algorithm

The algorithm processes a buffer of the given speech sig-
nal as follows: For bth buffer, the short-term energy for
each frame in that buffer is computed as é,(m). This is
appended with the surrogate signal, 3 rect(n) to form the
sequence é,(m), where rect(n) = u(n) —u(n—L), u(n)
is the unit step function and (3 is a scale factor determined
empirically. This sequence is viewed as the positive part
of the magnitude spectrum of an arbitrary signal and is
converted into its minimum phase equivalent. The group
delay of this signal is obtained. A noise-compensated
group delay, 77'(k), is then obtained by subtracting the
maximum value of the group delay of the first few frames.
Next, a median filtering on 7;*(k) using the current and
past elements is performed to yield 7;* (k). VAD-decision
is done on 7] (k) as follows: positive values of 7" (k) are
classified as speech regions and negative values are clas-
sified as non-speech. This algorithm is formally outlined
below.

1. Given a speech signal z(n), let us consider a
buffer of contiguous frames. If the length of the
buffer is B, then the number of buffers P =
length of z(n)/B.

2. For each buffer b (0 < b < P — 1), repeat steps 3
-12:

3. Compute the STE, é,(m), where 0 < m < B — 1.

4. Append STE with 3 rect(n). Form the sequence,
éy(m)

é(m) = é(m) 0<m<B-1()

ép(m)= pPrectim) B<m<B+L-1(6)

&(m)= 0 B+L-1<m<M-1(7)

where rect(n) = u(n) — u(n — L) and M =
9[log, (B+L)]

5. Form the symmetric sequence, € (m)

ésb(m) Zéb(QM—m—l) M<m<2M-1
)]

where 2M is the DFT order.

6. Improving resolution using . To improve the
resolution, perform the following:

ésb(m) = ésb(frn)’Y 0 <m< 2M717 0< vy
)]

7. ésp(m) is considered as a magnitude spectrum of
an arbitrary signal of 2M points in (—7, 7) and is
denoted by Ey (k).

8. Minimum phase equivalent. Compute the IDFT
of the function Ej(k). The causal portion of the
resulting sequence denoted by e, (1) is a minimum
phase signal [15].

9. Group delay computation. Compute the group
delay function [11], [14] of e (!)w(l), where w(l)
is a cepstral lifter of length W; as follows:

e Compute the phase spectrum ¢y(k) of
ep(Dw(l).

e Compute the forward difference

(k) = ¢p(k)—p(k—1) 1<k<2M-1

where 73,(k) is the group delay function.

10. Compute noise-compensated group delay 7;'(k)
as:
Tl?(k) = 7-b(k)_’rmax 0<k<2M-1 (10)

where Tynax = max7(n) for0 < n < T and T is
an empirically determined threshold-index.

11. Perform median filtering on the noise-compensated
group delay (77" (k)) as:
70 (k) = median(ry' (k)) 0<k<2M-1
Y

where median(.) computes a 5-point median.

12. VAD-decision. If 7;/'(k) > 0, classify frame as
speech else if 77'(k) < 0 classify frame as non-
speech.

Window Scale Factor (WSF) is defined as % WSF
and ~y are used to control the resolution of the group delay.
Figure 1(a) illustrates a noisy speech signal at 10 db SNR.
Although VAD-decision for each frame is made buffer-
wise, for illustration purposes, 1(b) shows the median-
filtered noise-compensated group delay for all buffers.
1(c),(d) and (e) show the VAD-decisions by GD-VAD,
G.729B VAD and manual VAD respectively.
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Figure 1: (a) Speech signal at 10dB SNR (b) Median-
filtered noise-compensated group delay for the entire sig-
nal (c) GD-VAD (d) G.729B VAD (e) Manual VAD

4. Results and discussion
4.1. Experimental setup

432 speech files (216 female, 216 male) were obtained
by concatenating sets of three individual speech utter-
ances taken from TIMIT [16]. Additionally, to model the
typical speech activity over a telephone conversation, si-
lence was inserted so that the ratio of silence to speech is
60:40 [17]. These files were then low-pass filtered and re-
sampled to 8kHz to conform to G.729B. Different types
of noise (babble, pink and white) from the NOISEX-92
database were added resulting in fifteen test-sets, each
having 0, 5, 10, 15 or 20 dB SNR respectively.

4.2. Results

Performance measures used for comparison between the
proposed method and G.729B are hit ratio of speech (P;)
and hit ratio of noise (FP,,) in comparison with manually
marked VAD-decisions [17]. Further, front-end clipping
and over-hang are ignored because hang-over schemes
are not implemented. The performance metrics P, and
P, are defined as:

No. of non-speech frames from algorithm x 100

P, n = .
No. of non-speech frames in manual VAD

P No. of speech frames from algorithm x 100

No. of speech frames in manual VAD

In the course of the experiments, the following pa-
rameters were varied: signal SNR (0 to 20dB), buffer
length B (step 2 in the algorithm), WSF (step 9) and
~ (step 6). A constant v = 0.5 and a buffer length of
B = 20 frames (frame shift = 10ms) yielded the best
results. The results are tabulated below.

From the tables, it can be observed that the perfor-
mance of GD-VAD is significantly better than G.729-
VAD. As an example, figure (1) demonstrates the re-
sult. Also, there is an inverse relationship between SNR
and WSF. This can be attributed to the fact that, at high
noise conditions (low SNR), the short-term energy func-
tion fluctuated rapidly and consequently a higher WSF is
mandated.

SNR | WSF PT?D PsGD P’r?7293 PSG7293
0 20 83.47 | 67.70 65.33 57.36
5 20 | 84.16 | 82.82 | 6545 68.28
10 20 90.42 | 89.93 65.33 77.47
15 14 | 9220 | 91.92 | 65.87 86.43
20 14 94.84 | 91.22 75.48 92.04

Table 1: Comparison of GD-VAD and G.729B-VAD for
speech corrupted with babble noise.

SNR | WSF PT?D PsGD P’r?7293 PSG7293
0 24 95.95 | 75.05 89.50 60.52
5 22 | 95.60 | 85.69 88.84 71.48
10 16 95.76 | 90.79 89.38 81.43
15 14 | 9559 | 92.56 | 88.40 88.65
20 14 96.58 | 91.26 93.22 94.49

Table 2: Comparison of GD-VAD and G.729B-VAD for
speech corrupted with pink noise.

SNR | WSF PT?D PSGD P’r?7293 PSG7293
0 22 94.49 | 75.72 89.54 54.27
5 20 | 9299 | 88.82 | 89.47 66.82
10 16 94.76 | 92.64 89.33 77.47
15 14 | 94.01 | 93.29 | 93.11 87.43
20 14 96.54 | 91.25 94.52 91.28

Table 3: Comparison of GD-VAD and G.729B-VAD for
speech corrupted with white noise.

5. Conclusion

In this paper, we propose a method for VAD by group
delay processing of the short-term energy of a given sig-
nal. Experiments were conducted on test data sets pre-
pared from TIMIT using various types of noise at dif-
ferent SNR levels. The results are then compared with
the G.729B VAD algorithm and is shown to perform sig-
nificantly better. On the other hand, since the proposed



method is a buffered algorithm, it has a higher latency
(200 ms) than G.729B (10 ms). This, however, is not an
issue for applications like speech activity detection in au-
tomatic speech recognition.
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