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Abstract—A distributed storage setting is considered where
a file of size B is to be stored across n storage nodes. A
data collector should be able to reconstruct the entire data
by downloading the symbols stored in any k nodes. When a
node fails, it is replaced by a new node by downloading data
from some of the existing nodes. The amount of download
is termed as repair bandwidth. One way to implement such
a system is to store one fragment of an (n, k) MDS code in
each node, in which case the repair bandwidth is B. Since
repair of a failed node consumes network bandwidth, codes
reducing repair bandwidth are of great interest.

Most of the recent work in this area focuses on reducing
the repair bandwidth of a set of k nodes which store the data
in uncoded form, while the reduction in the repair bandwidth
of the remaining nodes is only marginal. In this paper, we
present an explicit code which reduces the repair bandwidth
for all the nodes to approximately B/2. To the best of our
knowledge, this is the first explicit code which reduces the
repair bandwidth of all the nodes for all feasible values of
the system parameters.

I. INTRODUCTION

Consider a distributed storage system with n storage
nodes. A file of size B units of data (symbols) is to be
stored across these n nodes with the property that a data
collector (DC) should be able to obtain the entire file by
downloading data from any k nodes. This is termed as
reconstruction property.

Let each node have a storage space of α symbols, where
each symbol is assumed to belong to some finite field Fq

of size q. Clearly, for the reconstruction property to hold,
we need

α ≥ αmin = B/k (1)

When a storage node fails, it has to be replaced by a
new storage node, in order to maintain the same level of
reliability. The new node is created by downloading data
from a subset of the existing nodes such that, along with the
existing n−1 nodes, it satisfies the reconstruction property.
This operation of replacing a failed node by a new node is
termed regeneration. The amount of data to be downloaded
for regeneration is termed as repair bandwidth denoted by
γ. The system is depicted in Figure 1.

A simple way of achieving the above specified storage
system is to use a (n, k) MDS code where each node stores
one fragment of the MDS code. Here repair bandwidth is
the entire file B, though the amount of storage in the failed
node is just (B/k).
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Fig. 1. An illustration of reconstruction and regeneration: On failure of
node 1, data from nodes 2, 3 and 4 is used for regeneration

In the pioneering paper in this area [1], authors consider
a setting in which each failed node is regenerated by down-
loading a uniform amount of data from d of the existing
nodes. They introduce a scheme called regenerating codes
wherein each node stores slightly larger amount of data
than a MDS based code in order to reduce the repair
bandwidth. The authors also establish a tradeoff between
the repair bandwidth and amount of storage at each node.
The two extreme points of the tradeoff curve are minimum
storage regeneration point (MSR) and minimum bandwidth
regeneration point (MBR) corresponding to minimum stor-
age at each node and minimum repair bandwidth respec-
tively. Although the existence of regenerating codes has
been proved in [1], the suggested code construction is not
explicit and has high complexity and demands high field
size.

In our previous work [2] we give an explicit code
for optimal regeneration at the MBR point where the
regenerated node downloads data from all existing n − 1
nodes, and is constrained to store data identical to the failed
node. We also give an optimal explicit construction at the
MSR point where regeneration is done using only k +1 of
the existing nodes.

In [3] and [4] authors consider a set of k nodes as
systematic, which store data in uncoded form to decrease
computational complexity of reconstruction. In [3] authors
present a scheme which reduces the repair bandwidth of
the systematic nodes at the MSR point. However this
construction is not explicit and also requires a high field
size. In [4] we provide a scheme which minimizes the
repair bandwidth of the systematic nodes at the MSR point.
However in both the schemes mentioned above, emphasis is



given to reducing repair bandwidth of only the systematic
nodes, whereas the decrease in repair bandwidth of the
non-systematic nodes is marginal. Hence the average repair
bandwidth across all the nodes will be high if n is large
as compared to k and this is usually the case when high
reliability is required.

In this paper, we provide an explicit code which reduces
repair bandwidth to approximately half the file size for
all the nodes. The code construction provided has low
complexity and requires a low field size. We provide codes
for all values of the parameters B, α, n and k which satisfy
equation (1).

The rest of the paper is organized as follows. Section II
provides a code construction for the trivial case of α = 1.
Construction for α = 2 is provided in Section III. Using
the constructions for α = 1 and 2 as building blocks, a
construction for any value of α is given in Section IV.
Finally, in Section V we compare our construction to other
schemes in the literature.

II. CONSTRUCTION FOR THE CASE α = 1

α = 1 is a trivial case in which any (n, k) MDS code
minimizes the repair bandwidth. However, code construc-
tion for this case is provided here as this will be used in
the construction for the general case.

Let f be a vector with B source symbols as its elements.
Let l denote the length of this vector. Hence l = B, and
from equation (1) we have

l ≤ k (2)

Let p(i) (i = 1, . . . , n) be vectors of length l forming
a l-dimensional MDS code over Fq. In the rest of the
paper, we will use superscripts to denote the node number
corresponding to any symbol.

Code: Node i stores f tp(i), i = 1, . . . , n.

A. Reconstruction

Lemma 1: This code for α = 1 can achieve successful
reconstruction for a DC connecting to any k nodes.

Proof: The DC will obtain f tp(i) evaluated at k

different values. Since p(i)’s form a l−dimensional MDS
code and k ≥ l, the DC can solve for the values of the B
source symbols.

B. Regeneration

For regeneration of a failed node, we need d ≥ l.
Lemma 2: Any failed node can be regenerated by down-

loading one symbol each from any d existing nodes.
Proof: Since l = B, the entire file can be recon-

structed, using which the symbol stored in the failed node
can be regenerated.

C. Repair bandwidth

The repair bandwidth for any node is

γ1(l) = l = B (3)

where the subscript 1 indicates that there is only one
symbol to be regenerated in the failed node. This is the

minimum possible repair bandwidth for α = 1. Note that
the repair bandwidth is a function of the length l of the
source vector.

III. CONSTRUCTION FOR THE CASE α = 2

The code construction in this case is based on the optimal
code construction given in our previous work [2].

Partition the source symbols into two sets S and S′

having sizes l and l′ respectively such that

0 ≤ l, l′ ≤ k (4)

and
(l + l′) = B (5)

Let f, g be two vectors with their elements as the
constituents of the sets S and S′ respectively. Hence these
vectors have lengths l and l′ respectively. For i = 1 . . . , n
let p(i) be vectors of length l forming a l-dimensional MDS
code over Fq and r(i) be vectors of length l′ forming a l′-
dimensional MDS code over Fq.

Code: Node i (i = 1, . . . , n) stores (f tp(i), gtr(i)+f tu(i))
as its two symbols. The vectors p(i) and r(i) will be
referred to as the main vectors and u(i) as the auxiliary
vector of the node i. The elements of u(i) can be initialized
to any arbitrary values from Fq.

For example, consider k = 3 and B = 5. Let
b0, b1, b2, b3, b4 be the source symbols. Let l = 3 and
l′ = 2. Set f = (b0, b1, b2)t and g = (b3, b4)t. For
i = 1, . . . , n let the main vectors p(i) and r(i) form a Reed-
Solomon code with p(i) = (1 θi θ2

i )t and r(i) = (1 θi).
θi (i = 1, . . . , n) take distinct values from Fq(q ≥ n).
Elements of u(i) can be initialized to arbitrary values from
Fq.

A. Reconstruction:

Lemma 3: The code given for α = 2 can achieve
successful reconstruction for a DC connecting to any k
nodes.

Proof: The first symbols of some l out these k nodes
provide f tp(i) at l different values of i. To solve for f , we
have l linear equations in l unknowns. Since p(i)’s form
a l−dimensional MDS code, these equations are linearly
independent. As l ≤ k, they can be solved to obtain values
of the elements of f .

Now, as f and u(i) are known, f tu(i) can be subtracted
out from the second symbols of some l′ out of the k nodes.
This gives gtr(i) evaluated at l′ different values of i. As
l′ ≤ k, this can be used to recover the elements of g.

Thus the B symbols can be recovered by a DC which
connects to any k nodes. We also see that reconstruction
can be performed irrespective of the values of the auxiliary
vectors u(i).

B. Regeneration:

In this construction, when a node fails, the main vectors
of the regenerated node will be identical to that of the failed
node and the auxiliary vector is allowed to be different.



Suppose node j fails. The node replacing it would contain
(f tp(j), gtr(j) + f tũ(j)) where elements of ũj can take
arbitrary values from Fq and are not constrained to be
equal to those of uj . As the reconstruction property holds
irrespective of the values of uj , the regenerated node along
with the existing nodes has all the desired properties.

For regeneration of the failed node we need

d ≥ max(l, l′ + 1) (6)

Lemma 4: A failed node can be successfully regenerated
by downloading one symbol each from any d existing
nodes.

Proof: The node replacing the failed node downloads
one symbol each from some d of the n−1 existing nodes.
Consider failure of node Λd+1, where nodes Λ1, . . . ,Λd

participate in regeneration. Here the set {Λ1, . . . ,Λd+1} is
some subset of {1, . . . , n}.

For i = 1, . . . , d, node Λi passes a symbol which is a
linear combination of the two symbols stored in it. Let ai

and bi be the coefficients of this linear combination. Thus
πi = ai(f tp(Λi)) + bi(gtr(Λi) + f tu(Λi)) is the symbol
passed by node Λi.

The two symbols stored in the new node will be linear
combinations of these downloaded symbols. Let δi and ρi

be the coefficients of these linear combinations. Thus the
regenerated node will store(

d∑
i=1

δiπi ,

d∑
i=1

ρiπi

)
(7)

Choose

bi =
{

1 for i = 1, . . . , l′ + 1
0 for i = l′ + 2, . . . , d

(8)

Now choose ρi (i = 1, . . . , l′ + 1) such that

l′+1∑
i=1

ρir
(Λi) = r(Λd+1) (9)

and ρi = 0 for i = l′ + 2, . . . , d

Equation (9) is a set of l′ non-homogeneous linear
equations in l′ + 1 unknowns. Since r(Λi)’s form a
l′−dimensional MDS code, a solution is guaranteed and
can be easily obtained.

Choose δi (i = 1, . . . , l′ + 1) such that

d∑
i=1

δir
(Λi) = 0 (10)

and δi = 1 for i = l′ + 2, . . . , d.
Equation (10) is a set of l′ homogeneous linear equations

in l′ + 1 unknowns. Since r(Λi)’s form a l′−dimensional
MDS code, a solution with all δi (i = 1, . . . , l′ + 1)
non-zero can be obtained in Fq.

Now, choose ai (i = 1, . . . , d) such that

d∑
i=1

δi(aip
(Λi) + biu

(Λi)) = p(Λd+1) (11)

i.e
d∑

i=1

δiaip
(Λi) = p(Λd+1) −

d∑
i=1

δibiu
(Λi) (12)

Equation (12) is a set of l linear equations in d un-
knowns. Since d ≥ l, none of the δi (i = 1, . . . , d) are
zero, and p(Λi)’s form a l−dimensional MDS code, it can
be solved to obtain values for ai (i = 1, . . . , d).

C. Optimum partition size and repair bandwidth

The repair bandwidth for any node is

γ2(l, l′) = max(l, l′ + 1) (13)

Thus, to minimize the repair bandwidth the partition sizes
should be

l =
⌈

B

2

⌉
and l′ =

⌊
B

2

⌋
(14)

IV. CONSTRUCTION FOR ANY α

This section gives a code construction for the general
case using constructions for α = 1 and α = 2 as building
blocks.

Let
τ =

⌊α

2

⌋
(15)

Partition the B source symbols into 2τ + 1 sets
S1, S

′
1, . . . , Sτ , S′

τ , Sτ+1 having sizes l1, l
′
1, . . . , lτ , l′τ , lτ+1

respectively satisfying the following conditions

0 ≤ lj , l′j ≤ k ∀j ∈ {1, . . . , τ} (16)

lτ+1 = 0 for α even (17)

0 ≤ lτ+1 ≤ k for α odd (18)

and
τ∑

j=1

(lj + l′j) + lτ+1 = B (19)

Let f
1
, g

1
, . . . , f

τ
, g

τ
, f

τ+1
be 2τ + 1 vectors

with their elements as the constituents of the sets
S1, S

′
1, . . . , Sτ , S′

τ , Sτ+1 respectively. Hence the lengths
of these vectors are l1, l

′
1, . . . , lτ , l′τ , lτ+1 respectively.

For j = 1, . . . , τ +1 let p(i)
j

(i = 1, . . . , n) be vectors of
length lj forming a lj-dimensional MDS code over Fq. For
j = 1, . . . , τ let r

(i)
j (i = 1, . . . , n) be vectors of length l′j

forming a l′j-dimensional MDS code over Fq.

Code: For every pair of vectors (f
j
, g

j
), j = 1, . . . , τ

apply the construction given for α = 2 in Section III by
taking f

j
as f and g

j
as g. Each pair of vectors determines

two symbols to be stored in that node. When α is odd,
the construction given for α = 1 in Section II is applied
on f

τ+1
to obtain one symbol. The symbols so obtained

constitute the α symbols stored at each node.
Hence node i (∈ {1, . . . , n}) stores[

{ f t

j
p(i)

j
, gt

j
r
(i)
j + f t

j
u

(i)
j }τ

j=1, f t

τ+1
p(i)

τ+1

]
(20)

as its α symbols (as shown in Figure 2), where the symbol
corresponding to f

τ+1
is present only when α is odd.
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Fig. 2. Partitioning of the source file in the code construction for any α.

A. Reconstruction

Theorem 5: The code given can achieve successful re-
construction for a DC connecting to any k nodes.

Proof: Each of the first τ pair of symbols stored in
any node is separately constructed using the code given
for α = 2 in Section III. Apply Lemma 3 separately on
each pair of symbols stored in the k nodes to reconstruct
{f

i
, g

i
}τ

i=1.
When α is odd, the last symbol stored is constructed

using the code for α = 1 given in Section II. Apply Lemma
1 on the last symbol stored in the k nodes to reconstruct
f

τ+1
. Thus all the B source symbols can be reconstructed

by the DC.

B. Regeneration

Theorem 6: The code given can perform successful re-
generation of any failed node.

Proof: The symbols to be stored in the new node
replacing the failed node are regenerated in the following
manner. Each of the first τ pairs of symbols are regener-
ated separately as described in Lemma 4. The amount of
download required for the regeneration of the jth pair of
symbols is max(lj , l′j + 1).

When α is odd, the last symbol to be stored in the
new node is regenerated as described in Lemma 2 by
downloading lτ+1 symbols.

Encoding, reconstruction and regeneration is performed
on each pair of vectors separately, thereby immensely
reducing the complexity of each of these operations.

C. Optimum partition size and repair bandwidth

The repair bandwidth is dependent on the partition sizes.
By the method of regeneration described in Theorem 6, the
repair bandwidth for any node is given by

γ =
τ∑

j=1

γ2(lj , l′j + 1) + γ1(lτ+1) (21)

=
τ∑

j=1

max(lj , l′j + 1) + lτ+1 (22)

where equation (22) follows from equations (3) and (13).
Thus the optimum size of the partitions is the solution

to the following optimization problem:

min

 τ∑
j=1

max(lj , l′j + 1) + lτ+1

 (23)

subject to the conditions (16), (17), (18), (19) and
lj , l

′
j , lτ+1 ∀j ∈ {1, . . . , τ} being integers.

The following theorem provides a method to pick the
partition sizes in order to minimize the repair bandwidth.

Theorem 7: The bandwidth required to repair a failed
node is upper bounded by

γ ≤ B

2
+

α

2
+ k − 1 (24)

Proof: The following is an intuitive explanation of
the strategy to optimally allocate sizes of the partitions.
Consider the B source symbols as balls and the α partitions
as buckets. The capacity of each bucket is k. We need to
distribute all the balls in the buckets in a manner which
satisfies the optimization problem given in (23).

Choose a pair of empty buckets. Put k balls in the first
bucket and k − 1 in the second. Continue picking more
empty pairs of buckets and filling them in this manner, until
you cannot proceed. Each such pair of buckets consumes
2k− 1 balls and contributes k to the download bandwidth.
The number of buckets used will be 2 min(b B

2k−1c, b
α
2 c)

If there are any more balls left, then one of the two cases
must arise:

Case 1: At least one pair of empty buckets is available
and the number of balls remaining is less than 2k − 1 i.e.
b B

2k−1c < bα
2 c.

The number of balls left will be B mod (2k−1). If this
number is even, then distribute the balls equally in the two
buckets. If it is odd, then distribute the remaining balls in
the two buckets such that the first bucket gets one more
than the second. This step contributes

⌊
B mod (2k−1)

2

⌋
+ 1

to the download bandwidth.

Case 2: The number of empty buckets remaining is at
most 1 i.e. b B

2k−1c ≥ bα
2 c.

The number of balls left will be B − (2k − 1)bα
2 c.

Consider the set of all buckets, and put each remaining
ball in any bucket which is not yet full. Each such ball
will contribute 1 to the download bandwidth.
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The repair bandwidth for any node is given by

γ =

k
⌊

B
2k−1

⌋
+
⌊
B mod (2k−1)

2

⌋
+1 for

⌊
B

2k−1

⌋
<
⌊

α
2

⌋
B − (k − 1)

⌊
α
2

⌋
for
⌊

B
2k−1

⌋
≥
⌊

α
2

⌋ (25)

This expression can be simplified to obtain an upper bound
on the repair bandwidth as given by (24).

Thus the download bandwidth for any node is approxi-
mately half the file size.

The repair bandwidths required for regeneration of a
failed node for parameters B = 10000 and k = 10 are
plotted for various values of α in Figure 3. The graph is a
downward step since the repair bandwidth decreases when
α increases from odd to even, but remains constant when
α increases from even to odd.

It follows from equation (25) that if the storage per
node is increased beyond a certain threshold, the repair
bandwidth does not reduce any further. This threshold is
given by

αmax = 2
⌈

B

2k − 1

⌉
(26)

V. COMPARISON WITH EXISTING SCHEMES

A. Repair bandwidth

The construction provided in the present paper reduces
the repair bandwidth uniformly for all the nodes in the
system to approximately half the file size. To the best of
our knowledge, this is the first explicit code to do so for
all feasible values of the system parameters.

In [1] authors use a more general set up where the
symbols stored in a regenerated node need not be related
to the symbols stored in the failed node. The only con-
straint on the new node is that it along with the existing
nodes should satisfy the reconstruction and regeneration
properties. Codes introduced here are optimum in the sense
that they achieve the minimum possible repair bandwidth.
However no explicit constructions are provided.

In [3] and [4] authors consider the MSR point with the
constraint that a failed node is replaced by an identical
node. Schemes provided reduce the repair bandwidth of
systematic nodes alone. Non-systematic nodes are regener-

ated by downloading close to entire file size. As the repair
bandwidth for the non-systematic nodes is quite high in
both these schemes, the average repair bandwidth will be
high if n is much larger than k.

B. Complexity

As the code is explicit, the construction is immediate
provided the field size is greater than n.

In our construction, the main vectors of the regenerated
node are identical to the main vectors of the failed node.
However the auxiliary vector is permitted to be different.
We term this as an approximately exact repair. Since
the matrix inversions performed for solving the linear
equations during reconstruction and regeneration depend
only on the main vectors, these matrix inversions need to
be computed just once. Hence, system maintenance has a
low complexity.

In [1] the authors suggest the usage of a general network
code construction algorithm by Jaggi et al. [5] to obtain
the code. This algorithm has complexity higher than the
order of the number of sinks and and requires field size of
the order of number of sinks. The number of sinks in the
network representation of the distributed storage system is
large which leads to high complexity and high field size
requirements.

The construction given in [4] is explicit and hence
immediate given the field size. The construction given
in [3] is not explicit, and has a high code construction
complexity.

C. Field size required

If we use a Reed-Solomon code as the MDS code in the
construction, the minimum field size required is

q ≥ n (27)
On the other hand, constructions provided in [1] rely on the
algorithm given in [5] which requires field size of the order
of number of sinks, which is high for the distributed storage
setup. The scheme provided in [3] also the drawback of
high field size requirement. The code given in [4] requires
a low field size.
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