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Abstract—Accurately modeling the statistics of the uplink
interference power is an important problem in the design and
analysis of second and third generation code division multiple
access cellular systems. In the uplink, the total interference varies
not only because of wireless channel effects such as shadowing
and path loss, but also because of the randomness in the number
of interfering mobiles and their locations. Conventionally, it has
been argued this can be well modeled as a Gaussian distribution,
especially in the presence of power control. In this paper, we show
that when all the sources of randomness are considered together,
the uplink inter-cell interference power is better modeled by
a lognormal distribution. Using the well established theory of
Poisson point processes to model spatial mobile distributions, we
extend the moment matching or Fenton-Wilkinson method to
determine the parameters of the approximating lognormal. Our
results show that our lognormal approximation is several orders
of magnitude more accurate than the conventional Gaussian
approximation. These results have applications in cell planning
and layout and, in general, in cellular system design and analysis.

I. INTRODUCTION

Interference plays a crucial role in code division multiple
access (CDMA) based cellular communication systems. This
is because of the use of pseudo-random spreading codes for
transmitting data. While the spreading codes diminish the
interference received from other transmissions, they do not
completely annul it. The uplink interference consists from
intra-cell interference and inter-cell interference. The uplink
inter-cell interference signal received by a base station is
the sum of interference signals from the many interfering
users served by other base stations. The net power is a
random variable (RV) because the interfering signals undergo
shadowing and fading in their respective wireless channels.
Therefore, cellular system design and analysis requires an
accurate statistical characterization of the interference power.

In the literature, the uplink inter-cell interference power
has been often modeled by a Gaussian RV, with the central
limit theorem being cited as a justification for this [1]. Fur-
thermore, it has been argued that the Gaussian approximation
becomes more accurate in the presence of power control and
cell selection [2]. In this paper, we show that the Gaussian
approximation does not accurately model the uplink inter-cell
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interference even in the presence of power control. Instead,
we show that the lognormal distribution is significantly more
accurate.

Intuitively, this can be understood as follows. The interfer-
ing signal from each user undergoes lognormally distributed
shadowing [3]. When the number of interfering signals and
their shadowing parameters is deterministically known, it is
well understood that the sum of lognormal RVs is well
approximated by a lognormal RV [4], [5].1 In other words,
while the distribution of the sum does eventually become a
Gaussian RV, the rate of convergence of the sum distribution
to the Gaussian is slow. Consequently, several methods, such
as the Fenton-Wilkinson moment matching method [7], the
Schwartz-Yeh log-moment matching method [8], the Schle-
her cumulant matching method [9], and more recently, the
Beaulieu-Xie characteristic function inversion method [10]
and the Mehta et. al. moment generating function matching
method [6] have been proposed for determining the parameters
of the approximating lognormal.

However, modeling the uplink CDMA inter-cell interference
poses a new twist to this problem since the number of
interfering mobiles itself is random. Furthermore, additional
randomness is introduced because the transmitting mobiles can
be located anywhere within a cell. The use of power control
adds an additional dimension to this problem since it affects
the power transmitted by the mobiles.

In this paper, we use the elegant Poisson point process
theory to model the spatial randomness of the interfering
mobiles. The theory provides a tractable and reasonable model
for the spatial randomness observed in a CDMA uplink, and
has been used effectively in several wireless system design
problems [1], [11]. Based on this, we extend the moment
matching method, initially proposed by Fenton-Wilkinson for
the case when the number of interferers is deterministic, to
analytically determine the parameters of the approximating
lognormal. As we shall see, despite the additional sources of
randomness, the simplicity and accuracy of the F-W method
carry over to our problem a large extent. We show that
closed-form expressions, in terms of a single integral of a
simple function, can be written for the parameters of the

1An approximation is necessary in the first place because a closed-form
expression for the probability distribution of a sum of lognormal RVs is
unknown, except for certain special cases [6].
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approximating lognormal.2

Our results thus provide a more accurate snapshot model for
the interference. Consequently, they have applications in cell
planning and layout, and, in general, cellular system design
and analysis. It must be noted that while this model is useful,
it is not entirely sufficient. For example, to analyze call session
or data session specific behavior, a more detailed time trace
model or a time correlation model (in addition to the snapshot)
would also be needed. However, this is well beyond the scope
of this paper.

The paper is organized as follows. The system model
is developed in Sec. II. The alternate lognormal model for
interference is developed in Sec. III. Simulation results are
presented in Sec. IV, and are followed by our conclusions in
Sec. V.

II. UPLINK CDMA SYSTEM MODEL BASICS

Figure 1 shows the hexagonal cellular layout consisting of
a cell 0, which we henceforth refer to as the reference cell,
and an adjacent interfering cell k. The cell k is served by base
station (BS) k, which is located at the cell’s center. If first-tier
interferers are considered, k takes a value from 1 to 6, and if
second-tier interferers are also considered, k additionally takes
values from 7 to 18. Let Dk denote the distance between BS
k and the reference BS 0. We focus on the fading-averaged
interference case. While including the short-term fading in the
model is desirable, it is beyond the scope of this paper.

Consider a mobile i inside cell k. Let xi(k) denote the
position vector of mobile i with respect to BS k. Let ‖xi(k)‖
denote the corresponding distance of the mobile from BS k.

When the mobile i transmits a signal with power Pi, the
short-term fading-averaged receive signal power at BS k is
given by

Ri(k) = Pi

(
d0

‖xi(k)‖

)ε

s
(k)
i , (1)

where d0 is a reference distance and ε is the path loss
coefficient, which typically takes values between 2 and 4 [3].
The variable s

(k)
i denotes the shadowing of the uplink channel

from mobile i to BS k. As mentioned, shadowing is well
characterized by a lognormal random variable (RV), and can
be written as

s
(k)
i = 100.1yi(k) = eβyi(k), (2)

where yi(k) is a Gaussian RV with zero mean and variance
σ2

i (k) and β = 0.1 loge(10). Following terminology used in
the literature, we shall refer to σ2

i (k) as the dB variance of
the lognormal RV s

(k)
i . Typically, σi(k) takes values between

4 and 12. We assume yi(k) to be independent and identically
distributed for different values of i and k.

For a mobile i, let its serving cell, which controls and
decodes the mobile’s transmissions, be denoted by C(i). In this
paper, we assume that the serving cell is the geographically

2Modeling the intra-cell interference is relatively easy given a Poisson
point process model [1], and is therefore not considered in this paper. This is
discussed briefly in Sec. II.

nearest cell. (Our analysis can also be generalized to handle
the case of cell selection. But, this is beyond the scope of this
paper.) In the presence of power control, each transmitting
mobile regulates its transmit power (using feedback from the
serving BS) so that the receive power equals a preset threshold,
γ. Therefore, Ri(C(i)) = γ. From (1), we get

Pi =
γ

s
(C(i))
i

(
d0

‖xi(C(i))‖

)−ε

. (3)

Hence, if C(i) �= 0, the interference power received by the
reference BS 0 from mobile i equals

Ri(0) = γ
s
(0)
i

s
(C(i))
i

(‖xi(C(i))‖
‖xi(0)‖

)ε

, (4)

= γeβ(yi(0)−yi(C(i)))

(‖xi(C(i))‖
‖xi(0)‖

)ε

. (5)

The second step follows from (2). Note that yi(0)− yi(C(i))
is also a Gaussian RV with zero mean and variance σ2

i (0) +
σ2

i (C(i)). Henceforth, for analytical simplicity, we shall as-
sume that σi(k) is the same for all users and cells, i.e.,
σi(k) = σ. The method easily generalizes to the unequal σi(k)
case, albeit with the help of some extra book-keeping notation.

Let Ik

(
Nk; {xi(k)}Nk

i=1

)
denote the total inter-cell inter-

ference power at BS 0 from users served by BS k, given that
the number of interfering users is Nk and their locations are
x1(k), . . . ,xNk

(k). Then

Ik

(
Nk; {xi(k)}Nk

i=1

)

= γ

Nk∑

i=1

eβ(yi(0)−yi(C(i)))

(‖xi(C(i))‖
‖xi(0)‖

)ε

. (6)

A. Poisson Point Process Model for Users

The Poisson point process model provides an analytically
tractable model for the random user locations in a cell area.
Briefly, a homogeneous point process is characterized by an
intensity parameter λ. The probability that Nk users occur
within a cell of area A follows the Poisson distribution with
mean λA, and equals

Pr (Nk) =
(λA)Nk

Nk!
exp(−λA). (7)

Furthermore, conditioned on Nk, the geographical locations of
the Nk mobiles are uniformly distributed over the cell area.
While we limit our attention in this paper to homogeneous
Poisson point processes, the analysis can be extended to handle
non-homogeneous processes as well.

This implies that with power control, the intra-cell interfer-
ence power received by any cell of area A from the users it
serves is also a Poisson random variable with mean γλA [1].
Therefore, only the probability distribution of the inter-cell
interference remains to be characterized, as done in the next
section.
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III. ALTERNATE INTERFERENCE MODEL

The problem at hand is to characterize the distribution
of the total interference from cell k, denoted by Ik, when
unconditioned on the random number of users and their
locations in the cell. As mentioned, even for a fixed number
of interferers, an expression for the probability distribution of
Ik(.; .) is not available in closed-form.

We now develop the moment matching method to approxi-
mate the distribution of the total inter-cell interference power
received by reference BS 0 from BS k by a lognormal RV,
Ieq. Note that the same methodology directly applies when
the distribution of the total interference power received by
reference BS 0 from all its neighboring interfering cells needs
to be characterized. For simplicity, we henceforth drop the
interfering cell index k from the notation unless required
otherwise.

The moment matching method determines the parameters
of Ieq by matching its mean and variance with those of the
total interference, I , that is actually received by the reference
BS 0. The approximating lognormal RV can be written as
Ieq = exp(βyeq), where yeq is a Gaussian RV with mean μeq

and variance σ2
eq. Then, it can be shown that,

E [Ieq] = exp(βμeq + β2σ2
eq/2), (8)

E
[
I2
eq

]
= exp(2βμeq + 2β2σ2

eq), (9)

where E [.] denotes the expectation operator. Equating these
two expressions with the first and second moments of I yields

μeq = loge

(
E2 [I]√
E [I2]

)
, (10)

σeq =

√
loge

(
E [I2]
E2 [I]

)
. (11)

We now proceed to derive expressions for the first and
second moments of the total interference I , when averaged
over the shadowing as well as the spatial Poisson point process
model.

A. Evaluating First and Second Moments of I

In this section, we show the following two main results:

E [I] ≈ 2γNave

(
Dk

R

)2

eβ2σ2

× 1
W

W∑

w=1

∫ ∞

Dk
R

1
u3

(
1 + u2 − 2uaw

)−ε/2
du, (12)

and

E
[
I2
]
≈ 2γNave

(
Dk

R

)2

e4β2σ2

× 1
W

W∑

w=1

∫ ∞

Dk
R

1
u3

(
1 + u2 − 2uaw

)−ε
du, (13)

where Nave = λA is the average number of users in the
interfering cell of area A, and aw, 1 ≤ w ≤ W , are the
abscissa of Gauss-Chebyshev quadrature [12].

From (6) and the assumption that the shadowing is inde-
pendent of user location, we have

E
[
I(N ; {xi(k)}N

i=1)|N
]

= γ

N∑

i=1

E
[
eβ(yi(0)−yi(C(i)))

]
E
[(‖xi(C(i))‖

‖xi(0)‖

)ε]
, (14)

where E [.|N ] denotes conditional expectation given the num-
ber of interfering users N . For a homogeneous Poisson point
process, the user locations are uniformly distributed over the
cell area given N . Therefore, the interference averaged over
the user locations, conditioned on N , is given by

E [I(N)|N ] = Nγeβ2σ2
E
[(‖xi(C(i))‖

‖xi(0)‖

)ε]
, (15)

where i is an arbitrary user served by BS k.
For analytical tractability, we approximate a hexagon with

a circle of radius R. Since a user’s location is uniformly
distributed over the cell area, we have

p(r, φi) =
rdr

πR2
dφi, (16)

where r = ‖xi(k)‖ and φi is the azimuth of the
user’s location as shown in Fig. 1. Therefore, ‖xi(0)‖ =√

r2 + D2
k − 2rDk cos(φi). Hence,

E
[(‖xi(C(i))‖

‖xi(0)‖

)ε]

=
1

πR2

∫ 2π

0

∫ R

0

r

(
1 +

D2
k

r2
− 2

Dk

r
cos(φi)

)−ε/2

dr dφi,

=
2D2

k

πR2

∫ ∞

Dk/R

∫ 1

−1

1
u3
√

1− z2
(1 + u2 − 2uz)−ε/2 dz du.

(17)

where u = Dk/r and z = cos(φi). Using Gauss-Chebyshev
quadrature up to W terms [13], we get

E
[(‖xi(C(i))‖

‖xi(0)‖

)ε]

≈ 2D2
k

WR2

W∑

w=1

∫ ∞

Dk/R

1
u3

(1 + u2 − 2uaw)−ε/2 du, (18)

where aw, 1 ≤ w ≤ W , are the first W abscissa of
Gauss-Chebyshev quadrature. The error in the approximation
decreases to 0 as W increases. (W = 12 turned out to be
more than sufficient in our problem.) Substituting the above
result in (15) and unconditioning over N results in the desired
expression in (12).

The derivation for E
[
I2
]

follows along similar lines, and
is not repeated here.

IV. SIMULATIONS

We now plot the cumulative distribution function (CDF)
and complementary CDF (CCDF) of the measured uplink
interference from a first-tier interfering cell. For this purpose,
Monte Carlo simulations were used to generate 7×106 sample
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points. Also plotted are the CDF and CCDF of the analytically
approximated interference assuming a Gaussian distribution
and assuming a lognormal distribution, with parameters de-
rived using the results of the previous section. The mean and
variance of the Gaussian distribution are obtained by equating
them with the mean and variance of the total interference,
along lines similar to that in Sec. III-A. Plotting and comparing
the CDF and CCDF is instructive because small values of the
CDF reveal the accuracy in tracking the head portion (small
inter-cell interference values) of the probability distribution,
while small values of the CCDF reveal the accuracy in tracking
the tail portion (large inter-cell interference values) of the
probability distribution.

The following system parameters were used in the simu-
lations: path loss exponent, ε = 4, power control threshold,
γ = 8 dB, and lognormal dB standard deviation, σ = 6. The
cell radius was taken to be R = 400 m and the first-tier inter-
BS distance was Dk = 800 m.

Figure 2 plots the CDF when the average number of users
per cell is Nave = 10 (which corresponds to λ = Nave/(πR2)).
Figure 3 plots the same when the average number of users
per cell is larger and equals 30. It can be seen from both
the plots that the simulated CDF of the uplink interference
decays considerably faster than a Gaussian as the interference
(x-axis) tends to 0. In both figures, the Gaussian approximation
is inaccurate by two orders of magnitude. On the other hand,
the proposed lognormal approximation method is able to track
the observed CDF much better.

The difference in the behavior of the Gaussian and log-
normal CDFs for small values of the interference can be
understood as follows. The probability that a Gaussian RV,
with mean μG and variance σ2

G, is less than x is given by

1 − Q
(

x−μG

σG

)
. As x → 0+, this saturates at Q

(
μG

σG

)
.3 On

the other hand, the probability that a lognormal RV, with dB
mean μL and dB variance σ2

L, is less than x is given by

1 − Q
(

loge(x)−μL

σL

)
. For small x, this equals Q

(
| loge(x)|

σL

)
,

which tends to 0 since | loge(x)| → ∞ as x → 0+.
The CDF figures above show that despite having an accu-

racy considerably better than the Gaussian approximation, the
moment matching method based lognormal approximation is
clearly not perfect. Furthermore, the accuracy decreases as the
average number of users per cell increases. This result is in line
with the observations made in the literature for the case when
the number of lognormal summands (and their parameters)
is deterministic [4], [6], [10]. It is known that the moment
matching method emphasizes a more accurate fit for the tail
portion of the probability distribution than its head portion.

Figures 4 and 5 plot the corresponding CCDF curves
when the average number of users per cell is 10 and 30,
respectively. The lognormal approximation obtained using the
moment matching method tracks the actual CCDF very well.
Once again we observe that the lognormal approximation
is significantly better than the Gaussian approximation. This

3It can be shown that the mean of the Gaussian RV approximating the
interference is positive.

x x

o

BS 0 Dk

φi

i

‖xi(k)‖

R

‖xi(0)‖

BS k

Fig. 1. Hexagonal cellular layout showing the reference cell 0, a first-tier
interfering cell k, and the relative position of an interfering user i served by
cell k.
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Fig. 2. Comparison of accuracy of CDFs of uplink interference power ob-
tained from the proposed lognormal approximation method and the Gaussian
approximation when the average number of users per cell is 10.

is also in line with the observations made in the literature
for the case when the number of lognormal summands is
deterministic [4], [6], [10].

V. CONCLUSIONS

In this paper, we developed an alternate characterization of
the statistical distribution of the inter-cell interference seen in
the uplink of CDMA systems that use power control. In the
uplink, randomness is introduced in the interference power
not only because of lognormal shadowing but also because of
random number of users in the cells and their random spatial
locations. The moment matching lognormal approximation
method turned out to be several orders of magnitude more
accurate than the conventional Gaussian approximation even
when the number of number of interfering users was relatively
large. Both the head portion and tail portion of the inter-cell
interference probability distribution were better approximated
by a lognormal RV than a Gaussian RV.

The proposed method is easy to implement as the parame-
ters of the approximating lognormal can be written in closed-
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Fig. 3. Comparison of accuracy of CDFs of uplink interference power ob-
tained from the proposed lognormal approximation method and the Gaussian
approximation when the average number of users per cell is 30.
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Fig. 4. Comparison of accuracy of CCDFs of uplink interference power ob-
tained from the proposed lognormal approximation method and the Gaussian
approximation when the average number of users per cell is 10.
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Fig. 5. Comparison of accuracy of CCDFs of uplink interference power ob-
tained from the proposed lognormal approximation method and the Gaussian
approximation when the average number of users per cell is 30.

form in terms of the underlying wireless channel parameters
and the parameters of the Poisson point process driving the
spatial distribution of users. Our results also showed that
several insights for the case where the number of lognormal
summands was fixed (and so were their parameters) carried
over to the uplink scenario as well. While the results obtained
are considerably more accurate than those typically used in the
literature, scope for further improvement still remains. Future
work involves improving the lognormal approximation method
to better match CDF and CCDF.

REFERENCES

[1] C. C. Chan and S. V. Hanly, “Calculating the outage probability in a
CDMA network with spatial poisson traffic,” IEEE Trans. Veh. Technol.,
vol. 50, pp. 183–204, Jan. 2001.

[2] D. Tse and P. Vishwanath, Fundamentals of Wireless Communications.
Cambridge University Press, 2005.
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