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Abstract—In this paper we have examined spectrum sensing
using energy detection technique for cognitive radio. We have
calculated the probability of detection, probability of false alarm
and the probability of error in detecting primary users for
complex Gaussian signal and evaluated the effect of different
sensing parameters on the probability of error in detecting
primary users.

I. INTRODUCTION

Intelligent channel sensing forms the basic technique to-

wards the evolution of cognitive radio technology. Cognitive

radios work on efficient sensing algorithms to find the white

spaces in the primary/licensed user band and utilize them to

transmit their own data [1].

The key performance parameters for sensing algorithms are

the probability of detection, PD, implying that a primary user

is correctly sensed to be present when it is actually present

and the probability of false alarm, PF , implying that a primary

user is falsely signalled to be present when it is actually not

present.

In [2], authors have calculated the probability of detection

and probability of false alarm using FFT techniques for

a typical case of OFDM subcarriers. In [3], authors have

calculated probability of detection and probability of false

alarm for PSK signals and have calculated the tradeoff between

sensing time and throughput.

Figure 1shows a typical binary hypothesis testing scenario.

H0 and H1 are the two hypothesis used which denote the

absence and the presence of the primary user respectively.

The quality of detection can be measured by the following

parameters

• PD as the probability of detection.

• PF as the probability of false alarm.

• PM as the probability of miss and is given by 1− PD.

The threshold parameter γ is used in conducting likelihood

ratio tests to determine the hypothesis H0 or H1.

It is desirable to have a higher value of PD and a lower

value of PF . This is because higher PD implies primary

users are better protected and lower PF implies more chances

of secondary users to reuse the channel which in turn will

lead to higher throughput. Thus in cognitive radio networks

for increasing secondary user throughput, the problem is of

minimizing PF and increasing PD.

Fig. 1. Binary Hypothesis Testing

However, reducing PF and increasing PD are conflicting

objectives. Thus there is need of a tradeoff in the achievable

values of the two probabilities.

Basically, the main objective to work with conditional

probabilities such as PF and PD is to bypass the difficulties

faced in assigning realistic costs or a priori probabilities. By

realistic costs we mean the function that would denote the real

time cost function considering the presence and the absence of

the primary user. To generate real time cost function in varied

fading and interference scenarios would require very strong a

priori knowledge of parameters such as channel gain, bit error

rate etc. This sort of precondition would render any system

practically infeasible.

This paper is organized as follows. In section II, we have

derived the expression for probability of detection, PD, and

probability of false alarm, PF of primary user under energy

sensing technique, and observed the effect of variation in the

threshold γ and number of samples, N on quality of sensing.

In section III, we have calculated the probability of error in

detecting primary user, and observed its relation to variation

in probability of false alarm, number of samples, primary

user occupancy, and signal-to-noise ratio (SNR). Finally, we

conclude the paper by summarizing the main results of the
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paper in section IV.

II. PROBABILITY OF DETECTION AND PROBABILITY OF

FALSE ALARM OF PRIMARY USER UNDER ENERGY SENSING

TECHNIQUE

The binary hypothesis H0 and H1 are defined as

H0 : (primary user absent)

y(n) = u(n) n = 1, 2, . . . , N (1)

H1 : (primary user present)

y(n) = s(n) + u(n) n = 1, 2, . . . , N (2)

We make the following assumptions [2] :

• u(n) is AWGN noise defined as CN(0, σ2
u).

• s(n) is the primary user signal defined as CN(0, σ2
s).

• s(n) and u(n) are independent.

• Primary user signal to noise ratio under H1 is denoted

by

α =
σ2

s

σ2
u

(3)

Energy detection technique for channel sensing is best

suited for low complexity receivers in high signal to noise

ratios. The test statistic for energy detector is given as [4]

T (y) =
1
N

N∑

n=1

|y(n)|2 (4)

where N denotes the number of samples and |y(n)|2 is chi-

squared distributed [5].

Now, under H0, T (y) is a random variable with PDF

p0(x) (chi-squared distributed) and 2N degrees of freedom

for complex y(n) and N degrees of freedom for real y(n).

For a chosen threshold level γ, we have,

PF = P [T (y) ≥ γ/H0] =
∫ ∞

γ

p0(x)dx (5)

Under H0

y(n) = u(n),

T (y) =
1
N

N∑

n=1

|y(n)|2 =
1
N

N∑

n=1

|u(n)|2 (6)

Mean, denoted as µ0 is given by [5],

µ0 = E[T (y)] =
1
N

N∑

n=1

σ2
u = σ2

u (7)

Variance, denoted as σ2
0 is given by [6]

σ2
0 = E[T (y)− µ0]2 =

1
N

[E|u(n)|4 − σ4
u] =

1
N

σ4
u (8)

Using central limit theorem for large N , p0(x) can be

approximated as Gaussian PDF [5].

PF =
∫ ∞

γ

N(µ0, σ
2
0)dx (9)

=
1

σ0

√
2π

∫ ∞

γ

e
− (x−µ0)2

2σ2
0 dx

Using change of variables, we can write eq. 9 as

PF (γ) =
1√
2π

∫ ∞

[( γ

σ2
u
−1)

√
N ]

e
−t2
2 dt (10)

= Q

[(
γ

σ2
u

− 1
)√

N

]

where, Q(.) is defined as

Q(γ) =
1√
2π

∫ ∞

γ

e−
t2
2 dt (11)

Under H1,

y(n) = s(n) + u(n),

Denoting the PDF of T (y) under H1 as p1(x) we get PD as

PD = P [T (y) ≥ γ/H1] =
∫ ∞

γ

p1(x)dx (12)

Here again we will use central limit theorem for large N ,

such that p1(x) can be approximated as Gaussian PDF.

Mean, denoted as µ1 is given by

µ1 = E[T (y)] =
[

σ2
s

σ2
u

+ 1
]
σ2

u = [α + 1]σ2
u (13)

Variance, denoted as σ2
1 is given by

σ2
1 = E[T (y)− µ1]2 =

1
N

[α + 1]2σ4
u (14)

Using eq. 13 and 14 for mean and variance, we get

PD =
∫ ∞

γ

N(µ1, σ
2
1)dx (15)

=
1

σ1

√
2π

∫ ∞

γ

e
− (x−µ1)2

2σ2
1 dx

Similarly, using change of variables, we can write eq. 15 as

PD(γ) =
1√
2π

∫ ∞
√

N
α+1 ( γ

σ2
u
−α−1)

e
−t2
2 dt (16)

= Q

[ √
N

α + 1

(
γ

σ2
u

− α− 1
)]

Using eq. 10 and 16, we obtain an interdependent system

of equations as

PF = Q[(α + 1)Q−1(PD) +
√

Nα] (17)

PD = Q

[
1

α + 1
Q−1(PF ) +

√
Nα

α + 1

]
(18)

Now we observe the effect of threshold γ and number of

samples on PD and PF .

• Variation in threshold, γ: As γ increases, both PD and

PF decreases, and vice-versa.

• Variation in number of samples, N : For γ
σ2

u
> 1, PF

decreases with increase in N , and vice-versa, while for
γ

σ2
u

> α +1, PD decreases with increase in N , and vice-

versa.
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III. CALCULATION OF PROBABILITY OF ERROR IN

DETECTING PRIMARY USERS

Let the probability of primary user occurrence be given as

P . Thus the probability of non-occurrence is given by 1−P .

Then the probability of detecting error is given by

Pr(e) = (1− P )PF + P (1− PD) (19)

From eq. 19 it can be seen that maximizing PD and

minimizing PF will reduce Pr(e). Probability of detecting

error can be written as

Pr(e) = (1−P )PF +P

(
1−Q

[ √
N

α + 1

(
γ

σ2
u

−α−1
)])

(20)

If the preset value of PF is β̂, then

Pr(e) = (1−P )β̂ +P

(
1−Q

[ √
N

α + 1

(
γ

σ2
u

−α−1
)])

(21)

Thus, Pr(e) is a function of P , β̂, N , α and γ. Mathemat-

ically,

Pr(e) = f(P, β̂,N, α,
γ

σ2
u

) (22)

We will now evaluate the effect of different parameters on

the probability of detecting error, Pr(e).
• Variation in probability of false alarm, β:

We first considered the case when the threshold γ
σ2

u
<

α + 1 (see Figure 2). The value of Pr(e) varies as the

slope 1 − P . When PF is less, the second term in eq.

19 dominates, thus for higher values of P we get higher

values of Pr(e). When PF is high, then the first term in

eq. 19 dominates, so for decreasing P, we get higher value

of Pr(e). Thus to reap benefits of very low probability

of occurrence of primary users, as P = 0.1, we need to

have lower value of PF as for higher PF even the lower

P regions will show high value of Pr(e). For black spaces

with P typically being 0.9 or higher, Pr(e) variation is

very small with PF . This is as expected as the second

term dominates in eq. 19 for larger value of P.

For the case, when the threshold γ
σ2

u
> α+1 (see Figure

3), when PF is less, then Pr(e) ∼ P . Thus increasing P

increases Pr(e). Again, when PF is high, then Pr(e) ∼
(1−P )PF +P , and thus increasing P increases Pr(e). In
this case, even if we increase PF , we still get lower value

of Pr(e) for lower P unlike that as obtained in Figure 2.

• Variation in number of samples, N : In Figure 4,

probability of detecting error is plotted vs. the variation

in number of samples. When the ratio γ
σ2 < α + 1, for

large values of N, Pr(e) ≈ (1 − P )PF . Now P and PF

being constant for this particular setting, we get a constant

value of Pr(e) for large N. Similar observation is made

for the case when γ
σ2 > α + 1. Thus we can see that

whatever be the number of samples, increased value of P

always gives higher value of Pr(e) for a particular N.

• Variation in primary user occupancy, P :

In Figure 5 the variation in Pr(e) for different probability
of primary user occurrence P is shown for γ

σ2
u

< α + 1
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Fig. 2. Probability of detecting error v/s probability of false alarm for γ <
11, SNR = 10 dB, N=1000, γ= 10.
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Fig. 3. Probability of detecting error v/s probability of false alarm for γ >
11 SNR = 10 dB, N=1000, γ= 12.

is shown. For higher PF , the slope is negative and for

lower value of PF , slope is positive, as evident from the

equation 19. For lower P, the first term of equation 19

dominates, and thus higher value of PF gives higher value

of Pr(e). Now when P = 1, Pr(e) is independent of PF ,

So all the lines converge to a single point independent of

the value of PF .

In Figure 6 the variation in Pr(e) for different probability
of primary user occurrence P is shown for γ

σ2
u

> α+1 is

shown. For large values of N and γ
σ2

u
> α + 1, the slope

is approximately given by 1−PF . Hence, unlike the case

of γ
σ2

u
< α + 1, here the slope is always positive.

• Variation in SNR, α:
In Figure 7, the variation in Pr(e) is plotted as a function

of the SNR α for the case when γ
σ2

u
< α + 1. When

probability of false alarm PF is small, the second term

NCC 2009, January 16-18, IIT Guwahati 101



100 200 300 400 500 600 700 800 900 1000
0.1

0.15

0.2

0.25

0.3

0.35
Prob. of Detecting Error vs N 

P
ro

b
a

b
ili

ty
 o

f 
D

e
te

c
ti
n

g
 E

rr
o

r

N

P=0.1

P=0.5

P=0.9

Fig. 4. Prob. of Detecting Error vs N for γ < 11, SNR = 10 dB, PF =0.1,
γ= 10.
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Fig. 5. Prob. of Detecting Error vs Prob of PU occurrence for γ < 11 SNR
= 10 dB, N=1000, γ= 10.

in eq. 19 dominates, thus for higher value of P, we get a

correspondingly higher value of Pr(e). Also higher value

of SNR results in lower Pr(e). For the case when γ
σ2

u
>

α + 1, Pr(e) ≈ (1 − P )PF , thus almost constant with

respect to change in SNR.

IV. CONCLUSIONS

In this paper we have derived the expression for the proba-

bility of detection and the probability of false alarm using the

binary hypothesis testing procedure for spectrum sensing of

the primary user using energy detection technique. We have

also calculated the probability of error in detecting the primary

users and observed the effect of different sensing parameters

on the quality of sensing.
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Fig. 6. Prob. of Detecting Error vs Prob of PU occurrence for γ > 11 SNR
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