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Abstract—In this work, we study the performance of Low Den-
sity Parity Check (LDPC) codes over an Orthogonal Frequency
Division Multiplexing (OFDM) channel. We state a concentra-
tion theorem which shows that no Gaussian approximation is
required in the analysis of LDPC codes over OFDM. Then we
propose a rigorous density evolution method (without Gaussian
approximations) to prove the existence of thresholds for LDPC
codes over OFDM and evaluate the thresholds for various regular
and irregular LDPC codes. We calculate the capacity of OFDM
channel and compare LDPC threshold with this theoretical limit
and show that for irregular codes, LDPC thresholds are very
close to capacity at higher rates. We also compare the LDPC
threshold in OFDM with LDPC threshold in an ISI channel
with BCJR equalization. Using the feedback to the transmitter,
we apply Mercury/Waterfilling power allocation to improve the
OFDM capacity and LDPC thresholds. We show that with
Mercury/Waterfilling power allocation LDPC thresholds are very
close to capacity even at moderate rates .

I. INTRODUCTION

Low Density Parity Check (LDPC) codes exhibit a threshold

phenomenon when iteratively decoded using a sum-product

message passing decoder over many channels. Arbitrarily

low bit-error rates (BERs) can be obtained whenever the

channel noise level is below a particular threshold value

by increasing the blocklength and number of iterations. An

algorithm for finding the threshold, Density Evolution (DE),

has been proposed by Richardson et al [1]. For channels

with additive Gaussian noise, threshold DE was simplified

by Chung et al [2] using a Gaussian approximation. DE has

been extended to binary-input inter-symbol interference (ISI)

channels by Kavcic et al [3], who show that LDPC codes

provide near capacity performance over discrete-time Inter

Symbol Interference (ISI) channels.

The general problem of channel coding for OFDM systems

has been addressed in [4]. Design optimization of LDPC codes

for Multiple Input Multiple Output-OFDM (MIMO-OFDM)

system for a fixed target data rate has been addressed in [5].

Mannoni et al proposed a linear criterion for the optimization

of irregular LDPC codes for an OFDM system [6]. Baynast

et al [7] have proposed a two-step optimization of irregular

LDPC codes for OFDM channels. All of these previous works

employ a Gaussian approximation for threshold estimation

and do not completely prove the existence of thresholds. In

[11] we proposed a density evolution algorithm without Gaus-

sian approximation and presented initial results on thresholds

calculated for LDPC codes over OFDM. In this paper, we

address the following: (1) Proof of the concentration theorem,

(2) Mercury/Waterfilling power allocation across the OFDM

subcarriers, (3) More accurate computation of thresholds for ir-

regular and regular LDPC codes, (4) Comparison with OFDM,

ISI capacities.

Specifically, we state a concentration theorem which shows

that no Gaussian assumption is necessary in the analysis of

LDPC codes over OFDM. Using this result we then propose a

rigorous density evolution algorithm to compute threshold for

LDPC codes over an ISI channel under OFDM. We assume

that one code block is transmitted using a single OFDM

symbol. In the algorithm, we allow the block length to tend to

infinity. Consequently, the subcarrier spacing reduces and the

number of subcarriers tend to infinity for the same bandwidth.

Since the number of subcarriers tend to infinity, the finite

cyclic prefix results in no additional overhead. We calculate

the OFDM channel capacity and compare OFDM thresholds

obtained by our density evolution with this theoretical limit.

We show that for higher rates (rates higher than 0.6) the

thresholds are very close to the theoretical limit. An optimum

power allocation scheme, Mercury/Waterfilling, for parallel

Gaussian channel with arbitrary input constellation has been

proposed by Lozano et al [10]. We use this power allocation

scheme to improve the OFDM capacity. We apply LDPC

codes with this power allocation and demonstrate that LDPC

thresholds also show considerable improvement. We show that,

with this optimum power allocation, LDPC thresholds are very

close to capacity even at moderate rates ( rates higher than

0.2). We also make a comparison between the time-domain

BCJR algorithm and the frequency-domain OFDM method

for equalizing an ISI channel. To this end, we compare the

threshold for LDPC codes under OFDM with that of the BCJR

thresholds obtained by using the algorithm given in [3].

II. SYSTEM DESCRIPTION

In this work, we focus our attention on an Orthogonal

Frequency Division Multiplexing (OFDM) system. We assume

transmission over an ISI channel1 with L fixed taps. The

channel is modeled as

z = H.c + N, (1)

where c is the input vector, z the output vector, H the

Discrete Fourier Transform (DFT) of the Channel Impulse

Response and N the normalized DFT of the random noise

vector, and “.” denotes the dot product of two vectors. All

these vectors mentioned here are of length Nc, the number of

1This can be easily extended to OFDM over a block fading channel.
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subcarriers. We have input alphabet X = F2 and consider

BPSK modulated input 0 → +1, 1 → −1. Therefore, the
power in every input symbol is the same and equal to unity.

The analysis of the decoder requires letting the blocklength

of the code to tend to infinity. The motive behind the as-

sumption is that the cyclic prefix involved in the OFDM

transmission remains an overhead of fixed length (given by

the number of taps in the channel), while the number of

information symbols increases as the OFDM symbol length

tends to infinity. This increases the throughput, and in the limit

the cyclic prefix gives no overhead. The above assumption

would also imply that the number of subcarriers Nc would

tend to infinity. In the OFDM system, the length of all

vectors would also tend to infinity and the Inverse Discrete

Fourier Transform (IDFT) and DFT computed would also

be infinite-point versions. In the mathematical model for the

channel, the factor multiplying the signal is now a sample of

the Discrete Time Fourier Transform (DTFT) of the channel

impulse response instead of a DFT sample in the finite version.

III. ANALYSIS OF LDPC CODES OVER AWGN

For irregular LDPC codes of blocklength n, the parameters,

the variable and check node degree distributions are specified

as polynomials, denoted λ(x) and ρ(x), respectively. The

triplet, (λ, ρ, n), thus specifies an ensemble of LDPC codes.

A. Density Evolution

Density Evolution is an algorithm that analyzes an ensemble

of LDPC codes by tracking the probability density function

(pdf) of the message passed on a random edge of a graph in the

ensemble averaged over the entire ensemble. It can therefore

specify the average error probability as a function of iteration

number, thereby serving as a performance metric for LDPC

codes.

Consider an AWGN channel, with binary input and BPSK

modulation. The actual message passed on the edges in case

of AWGN channel in the zeroth iteration of message passing

is the Log-Likelihood Ratio (LLR) of the received value from

the channel. The pdf of the LLR is termed the L-density and

the L-density at iteration l is denoted fl. It is assumed that

there are no cycles up to depth l. Density evolution, in this

case, states

l(y) ∼ f0 ≡ N
(

2
σ2

,
4
σ2

)

fl = f0 ⊗ λ (ρ (fl−1)) , (2)

where for L-density f

λ(f) :=
∑

i

λif
⊗(i−1), ρ(f) :=

∑

i

ρif
⊠(i−1).

Here, ⊗ and ⊠ denote the convolutions carried out in the

L-domain and G-domain, respectively. These domains are

defined in [9].

The probability of error obtained is a monotone function

with respect to the channel parameter (noise variance σ2) and

with respect to iteration number. Also, there exists a well-

defined supremum of σ for which probability of error → 0 as

the number of iterations l → ∞, and this supremum is called

the threshold of the decoder, denoted σ∗ [9].

IV. ANALYSIS OF LDPC CODES OVER OFDM

A. Log-Likelihood Ratio

The OFDM channel described is clearly a binary memory-

less channel. The LLR defined as

ui = L(zi) := ln
[

pZi|Ci
(zi|ci = 1)

pZi|Ci
(zi|ci = −1)

]

forms a sufficient statistic with respect to decoding for all

binary memoryless channels.

B. Channel Symmetry

We see that

pZi|Ci
(zi|ci = 1) = pZi|Ci

(−zi|ci = −1)

for zi given by (1). Thus, the channel is symmetric and can

be modelled [9] as

ci

fUi−−→ Zi, Zi = ciUi, Ui ∼ fUi (3)

where fUi is the distribution of ui conditioned on ci = 1 and

channel gain H [i]:

fUi(ui) =
σ

4|H [i]|√π
exp

[
− (σ2ui − 4|H [i]|2)2

16|H [i]|2σ2

]
(4)

i.e. Ui ∼ N
(

4|H [i]|2
σ2

,
8|H [i]|2

σ2

)
. We see that

fUi(ui) = exp(ui).fUi(−ui) (5)

and thus, the LLR distribution is symmetric. Under these

symmetry conditions, we can assume that the transmitted code

word is all-one codeword2.

C. Concentration Theorem

In an OFDM channel, message passing decoding with an

irregular LDPC code raises an interesting question. OFDM

system can be considered as a set N parallel AWGN channel,

each with a different SNR. For irregular codes, the degree of

each bit node can be different. The incoming bit from the ith
channel can be assigned to jth bit node for decoding. Since

we are assuming that the length of OFDM symbol is same as

the code length, there are N ! such assignments possible (all

of them need not be different since there are many number

of bit nodes with same degree). For example, the incoming

bit from the highest SNR channel can be assigned to bit node

with lowest degree and the incoming bit from the lowest SNR

channel can be assigned to bit node with highest degree. All

the other bits follows this order. We can think of another

arrangement in the opposite order too. So, the problem is to

find out an assignment which gives the optimum performance

2BPSK modulated
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in terms of BER and LDPC threshold. This is equivalent to

the problem of designing an optimum interleaver.

However, in our study, we observed that BER performance

(and LDPC threshold) of an irregular LDPC code is almost

the same for different random interleaving (incoming bits

are assigned to the bit nodes in a random manner). More

specifically, out of the N ! interleavers available, if we select

interleaver u and v uniformly at random, their performance

turned out to be remarkably close. We present this result as a

concentration theorem. The proof is given in [12]

Consider a degree distribution pair (λ, ρ) and transmission

over an OFDM channel with N subcarriers. We assume that

the block length of the LDPC code n is same as the number

of OFDM subcarrier ie, n = N . We denote each of these

interleaver (or,assignment) as vectors Gu, 1 ≤ u ≤ N !.
1) Theorem: Let Z l

Gu
be the random variable that denotes

the number of erroneous variable-to-check node messages after

l rounds of the message-passing decoding algorithm when the

code graph is chosen uniformly at random from the ensemble

of graphs with degree distribution pair (λ, ρ) and when the

the interleaver chosen uniformly at random is Gu. Let pl
Gu

be the expected number of incorrect messages along an edge

with a tree-like neighborhood of depth atleast 2l at the lth
iteration when the interleaver chosen uniformly at random.

Let ne be the number of edges in the graph. For an arbitrary

small constant ǫ > 0, there exists a positive constant β = β
(λ, ρ, l), such that if n > 2γ

ǫ , then

P

(∣∣∣∣∣
Z l

Gu

ne
− p

∣∣∣∣∣ ≥ ǫ

)
≤ 4e−β

′
ǫ2n (6)

where the error concentration probability p is defined as

p =
1

N !

N !∑

i=1

pl
Gu

.

The theorem shows that Z l
Gu

is highly concentrated around

p. This result ensures that we need not consider any particular

interleaver for the analysis of LDPC over OFDM since the

performance given by an interleaver selected uniformly at

random from the set of all arrangement is close to the average

performance and hence it is enough to study this average be-

haviour. This eliminates the need for Gaussian approximation

in the density evolution and enables us to propose a rigorous

density evolution which analyze this average behavior.

D. Density Evolution

Theorem: Consider an OFDM channel with Nc subcarriers

with code of blocklength n = Nc, with associated L-densities
f̃i, i ∈ {1, 2, . . . , Nc} (4). Then, the initial message density

f0 =
1

Nc

Nc∑

i=1

f̃i, (7)

and for l ≥ 1,
fl = f0 ⊗ λ (ρ (fl−1)) , (8)

where for L-density f

λ(f) :=
∑

i

λif
⊗(i−1), ρ(f) :=

∑

i

ρif
⊠(i−1).

Proof: The initial density of the LLR f0 is the only step of

the algorithm that differs from the AWGN channel case. It can

be easily seen that the f0 given by (7) is still symmetric, i.e. it

still satisfies (5). We now prove that the initial density of the

LLR is given by (7). The proof of the rest of the algorithm is

exactly the same as in the AWGN channel case and is given

in [9].

Let er be a random edge and vi the ith variable node in the

Tanner graph G of the code specified by the degree distribution

pair (λ, ρ). Let Ne be the total number of edges in G. The LLR

distribution of the message received at vi from the channel is

given by f̃i. The probability density function of the message

carried by this edge in the variable-to-check message passing

step of the zeroth iteration, averaged over the ensemble of

graphs characterized by (λ, ρ) is given by

f0 :=E[G(λ,ρ)](f(er))

=
Nc∑

i=1

P(vi ∈ er)f̃i

=
Nc∑

i=1

[∑

m

P (dG(vi) = m) .P (vi ∈ er|dG(vi) = m)

]
f̃i

=
Nc∑

i=1

[∑

m

{
Neλm

mNc

}{
m

Ne

}]
f̃i

=
1

Nc

Nc∑

i=1

f̃i

which is the same as (7).

E. Monotonicity and Threshold

As the update equation involved in the density evolution

algorithm is the same as that in the AWGN case, the mono-

tonicity arguments made there apply here also. We therefore

have a supremum σ∗ for the noise variance beyond which the

error probability does not converge to zero even after infinite

rounds of message passing.

We estimate these thresholds for various regular LDPC

codes over OFDM channels. We describe the method em-

ployed for threshold estimation in the following section.

V. THRESHOLD ESTIMATION

Since we are assuming a single OFDM symbol over the

blocklength, we let Nc tend to infinity. Equation (7) is no

more a summation but an integral. As described earlier, the

LLR distribution is now a continuous function of ω the angular

frequency through its dependence on H(ejω) the DTFT of the
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channel impulse response. Equation (4) therefore becomes

f(u, ω) =
σ

4|H(ejω)|√π
exp

[
− (σ2u− 4|H(ejω)|2)2

16|H(ejω)|2σ2

]

H(ejω) =
∞∑

i=−∞
h[i]e−jωi

and (7) becomes

f0(u) =
1
2π

∫ 2π

0

f(u, ω).dω (9)

Unfortunately, the function f(u, ω) is not always well be-

haved - it tends to the continuous Dirac-Delta function when

|H(ejω)| = 0 and therefore f0(u) is not directly obtainable

from (9) when the channel has spectral nulls. This difficulty

can be overcome by calculating f0(u) through the character-

istic function of f(u, ω) [11].

The density given by this method is now used in the density

evolution to estimate the threshold.

VI. OPTIMUM POWER ALLOCATION USING

MERCURY/WATERFILLING

OFDM can be considered as a set on Nc parallel AWGN

channel. On the ith channel, the input-output relation is

Yi = HiXi + Wi, (10)

where the complex scalar Hi is the deterministic gain while

the noise Wi is a zero mean unit variance complex Gaussian

random variable independent of the noise of the other channel.

The aggregate power constraint is 1
Nc

∑Nc

i=1 E
[
|Xi|2

]
≤ P .

Once we know the expected value of the signal power in

each channel, calculating the capacity of that channel is fairly

straight forward. Since we can calculate the capcity for each

parallel AWGN channel, the capacity of OFDM system can

also be computed easily.

The SNR corresponds to each channel can be different due

to different Hi which scales the signal. Therefore, the trivial

power allocation, equal power on all subcarrier, will not be the

optimum. If the input to the parallel channels are mutually

independent and Gaussian, the optimum power allocation is

simple and given by the waterfilling policy. However the inputs

are usually drawn from a discrete constellation, and the wa-

terfilling policy is no longer optimum. The main difficulty in

the formulation is the lack of explicit expression for the corre-

sponding mutual information. Recently, Mercury/Waterfilling

scheme which is the optimum power allocation for parallel

Gaussian channels with arbitrary input constellation has been

proposed by Lozano et al [10].

We used the Mercury/Waterfilling power allocation scheme

and calculated the OFDM system capacity. OFDM system

capacity shows 2-4 dB improvement compared to equal power

allocation case. Calculation of LDPC thresholds with this

power allocation in OFDM subcarriers may look like a

new challenge. We assumed that the input to each OFDM

subcarriers is binary with BPSK modulation and hence the

signal power in each subcarrier is constant. We formulated

the density evolution algorithm (which gives us the LDPC

thresholds) with these assumptions. So, how we calculate the

LDPC thresholds when the signal power in each subcarriers is

different is not very clear. But, this difficulty can be overcome

by a simple manipulation. We can write Xi =
√

piPSi, where

where Si is unit power input. The the normalized powers pi

are constrained by 1
Nc

∑Nc

i=1 pi ≤ 1 so that overall power

constraint is satisfied. Now, we can subsume this
√

piP factor

to the Hi and rewrite (10) as

Yi = H
′
iSi + Wi, (11)

Now LDPC thresholds can be calculated with the same algo-

rithm.

VII. RESULTS

We give a few results of the thresholds estimated using the

proposed algorithm.

A. Threshold Evaluation

We consider a 2-tap channel,

{h[i]} = { 1√
2
,− 1√

2
}.

We use this channel to compare results with those published

in [3].

(L, R) Rate ISI threshold [3] OFDM threshold

σ∗ SNR∗ σ∗ SNR∗

(3, 4) 0.250 1.196 −1.555 1.175 −1.413
(3, 5) 0.400 0.945 0.491 0.897 0.9376
(3, 6) 0.500 0.822 1.703 0.751 2.478
(3, 10) 0.700 0.631 3.999 0.479 6.3754
(3, 15) 0.800 0.547 5.240 0.3217 9.840

TABLE I

REGULAR LDPC CODE THRESHOLD FOR ISI & OFDM

Rate Equal Power Mercury/Waterfilling

σ∗ SNR∗ σ∗ SNR∗

0.10 1.713 −4.677 2.485 −7.906
0.30 1.176 −1.408 1.493 −3.484
0.60 0.666 3.511 0.737 2.653
0.80 0.365 8.757 0.472 6.515

TABLE II

IRREGULAR LDPC CODE THRESHOLD FOR OFDM .

Table I gives the thresholds obtained for different rate

regular LDPC codes. It gives the degree distribution of the

LDPC code, its design rate, the threshold values obtained3 for

OFDM and also lists the thresholds obtained for ISI channel

using the BCJR algorithm in [3].

Table II gives the thresholds for irregular LDPC codes.

These codes are optimized for AWGN channel.

3The threshold values are scaled by
√

2 to compare with the corresponding
values of ISI thresholds, wherein the σ values correspond to the variance of
the real part of the noise.
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Fig. 1. OFDM and ISI Thresholds
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Fig. 2. LDPC Thresholds for OFDM with Mercury/Waterfilling power
allocation.

Figure 1 summarizes the results. It gives the LDPC thresh-

olds (for regular and irregular codes) over OFDM and LDPC

thresholds over an ISI channel. For comparison, we also plot

OFDM capacity and ISI capacity. We see that irregular codes

gives an improvement of 1dB over the regular codes. At higher

rates LDPC threshold (for irregular codes) are very close to

the theoretical limit, the OFDM capacity. LDPC thresholds

for ISI channel is also very close to ISI channel capacity at

higher rates. In both case, the gap between the capacity and

LDPC thresholds increases as the rate decreases. We can also

compare OFDM-LDPC thresholds and ISI-LDPC thresholds.

We see that for lower rate OFDM-LDPC thresholds are better

than that of ISI-LDPC thresholds. But as the rate increases,

ISI-LDPC thresholds get better and at higher rates ISI-LDPC

threshold are very much superior to OFDM-LDPC thresholds.

One can observe a fundamental reason behind this. In this

region, ISI capacity is much better than the OFDM capacity,

which can be seen clearly from the figure. OFDM-LDPC

threshold can get maximum upto the OFDM channel capacity

and at higher rate they do so. However the ISI capacity is much

better than these values and ISI-LDPC codes perform close to

those. So, ISI-LDPC thresholds are fundamentally better than

OFDM-thresholds in this region.

We apply Mercury/Waterfilling power allocation policy to

OFDM and calculate the LDPC threshold in this case. Table

II gives the OFDM-LDPC thresholds for irregular codes.

OFDM capacity with Mercury/Waterfilling power allocation

and LDPC thresholds in this case are plotted in the figure 2

along with equal power case (We have considered QPSK mod-

ulation here). LDPC thresholds show a 2-4 dB improvement.

More interestingly, LDPC thresholds in this case are very close

to the capacity even at moderate rates.

VIII. CONCLUSION

In this work, we have proposed a rigorous density evolution

(without Gaussian approximation) to analyze the performance

of LDPC codes over an OFDM system. We proved the exis-

tence of LDPC threshold in an OFDM system and calculated

the LDPC threshold for various regular and irregular codes.

We have shown that, for higher rates the irregular LDPC

thresholds are very close to OFDM capacity. Then, we used

Mercury/Waterfilling power allocation for OFDM subcarriers

and calculated the LDPC thresholds in this case. In this case,

we demonstrated that, irregular LDPC threshold are close to

capacity even at moderate rates.
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[3] A.Kavčić, Xiao Ma, M.Mitzenmacher, “Binary Intersymbol Interference
Channels: Gallager Codes, Density Evolution and Code Performance
Bounds”, IEEE Transactions on Information Theory, pp.100–118, Feb
2002.

[4] W.Y. Zou, Y. Wu, ” COFDM : An Overview,” IEEE Transaction on
broadcasting, vol.41, no. 1, pp.1-8,March 1995

[5] B.Lu, G.Yue, X.Wang, ”Performance Analysis and Design Optimization
of LDPC coded MIMO OFDM system,” IEEE Transaction On Signal
Processing, vol.52, issue 2, pp.348-361, Feb.2004

[6] V.Mannoni, G.Gelle, D.Declercq, “A Linear Criterion to Optimize
Irregular LDPC Codes for OFDM Communications,” IEEE Vehicular
Technology Conference, vol.1, pp.100–118, May 2005.

[7] A.Baynast, A.Sabharwal, B.Aazhang, “LDPC Code Design for OFDM
channel: Grapgh Connectivity and Information Bits Positioning,” ISSCS
2005. International Symposium on Signals, Circuits and Systems, vol. 2,
pp.649–652,July 2005.

[8] D.Tse, P.Viswanath – Fundamentals of Wireless Communication, Cam-
bridge University Press, First South Asian Edition 2006

[9] T.Richardson, R.Urbanke, Modern Coding Theory
http://lthcwww.epfl.ch/mct/index.php

[10] A.Lozano, A.M.Tulino, S. Verdu, “Optimum Power Allocation for
Parallel Gaussian Channels With Arbitrary Input Distributions”, IEEE
Transactions on Information Theory, Vol. 52, July 2006.

[11] A. Iyengar, M. K. Dileep, S. Bhashyam, A. Thangaraj, “TThresholds for
LDPC codes over OFDM,” Proceedings of IEEE COMSWARE 2008,
Workshop on WIreless Systems: Advanced Research and Development
(WISARD 2008), January 2008.

[12] M. K. Dileep,, “LDPC codes over an OFDM system,” Mtech Thesis,
IIT Madras, June 2008.

NCC 2009, January 16-18, IIT Guwahati 107


